Practical adaptation of the pedagogical methodology of 4C/ID in the framework of teaching the discipline «Networks and information transmission systems» in the professional education system

Cover Page

Cite item

Full Text

Abstract

Background. This study presents an analysis of the challenges in teaching the discipline "Networks and Information Transmission Systems" within professional education, as well as an investigation into the effectiveness of implementing the 4C/ID pedagogical model to balance theoretical and practical aspects of training. A comparative analysis of existing pedagogical approaches was conducted, highlighting the shortcomings of traditional methods and justifying the selection of the 4C/ID model to enhance educational quality. During the experiment carried out from 2021 to 2023, students trained using the 4C/ID methodology demonstrated a higher level of material comprehension, practical skill development, and increased interest in the discipline compared to traditional approaches. The results confirm the effectiveness of employing the 4C/ID model to bridge the gap between theory and practice in IT education, contributing to the development of professional competencies and student independence. The work demonstrates the feasibility of integrating this model into the educational process to improve the quality of training specialists in network technologies.

The purpose of the research is to analyze the problems of teaching the discipline «Networks and information transmission systems» in the professional education system, study existing pedagogical methods and develop an adaptation of the four-component educational design model (4C/ID) to balance the theoretical and practical aspects of the discipline. The discipline occupies an important place in the training of specialists in the field of information technology, however, traditional teaching methods do not always ensure effective assimilation of the material and the development of the necessary practical skills. In this regard, there is a need to adapt modern pedagogical approaches aimed at improving the quality of education.

Materials and methods. The research uses methods of comparative analysis of pedagogical approaches and practical testing of the 4C/ID model. The analysis of pedagogical approaches revealed the key problems of teaching the discipline, including insufficient attention to practical aspects and the gap between theoretical knowledge and its application in practice. In the course of the work, various models of pedagogical design were studied, such as ADDIE, SAM, Action Mapping and 4C/ID, and the choice of the latter for use in the educational process was justified.

The experiment was conducted as part of the educational process in 2021-2023 and included the participation of students studying in the discipline «Networks and information transmission systems». The groups were trained using different methods: traditional and based on the 4C/ID model. The effectiveness was assessed on the basis of students' engagement, the level of material assimilation and their ability to apply knowledge in practice.

Results. The use of the 4C/ID model has shown an increase in student engagement and the level of learning of educational material. The main components of the model provided more structured and practice-oriented learning. Students who studied using the 4C/ID model demonstrated a higher level of understanding of the educational material, as well as improved skills in solving practical problems. As a result of the experiment, there was an increase in interest in the discipline, an increase in the number of completed additional tasks and an improvement in the results of the final testing.

The use of the 4C/ID model helps bridge the gap between theory and practice in IT education. Its structure ensures a balance between theoretical knowledge and practical application, fostering professional competencies, engagement, and student autonomy. The model effectively aligns education with industry demands. Promising directions include integrating 4C/ID with immersive technologies for simulating complex network scenarios, as well as testing its scalability in large and international student groups. Implementing the model is highly advisable for modern IT education.

About the authors

Anton G. Uymin

Gubkin University

Author for correspondence.
Email: au-mail@ya.ru
ORCID iD: 0000-0003-1572-5488

Senior Lecturer at the Department of Information Technology Security  

 

Russian Federation, 65, Leninsky Prospekt, Moscow, 119991, Russian Federation

References

  1. Uymin, A. G., & Melnikov, D. A. (2021). Review of network infrastructure modeling tools in training specialists for major groups of specialties 09.00.00, 10.00.00. Science. Informatization. Technologies. Education, 392–405. EDN: https://elibrary.ru/UBPPBN
  2. Eshonqulov, S., Nomozov, O., & Eshonqulova, S. (2021). Principles, forms and methods of teaching in computer science instruction. Boshlang’ich ta’limda innovatsiyalar, 2(2).
  3. Tabachuk, N. P., & Melnikova, V. V. (2017). Development of students’ information competence through an interactive modular course “Computer Networks”. Bulletin of Omsk State Pedagogical University. Humanitarian Research, (3), 169–171. EDN: https://elibrary.ru/ZXNVXJ
  4. Kurose, J., & Ross, K. (2022). Computer networks: A topdown approach. Litres.
  5. Platonov, A. Yu., Chinova, Yu. S., & Beley, V. M. (2021). Review of regulatory legal acts regarding specialties that meet mandatory requirements for licensed specialists in information security. Scientific, Technical and Economic Cooperation of the APR Countries in the XXI Century, 1, 219–230. EDN: https://elibrary.ru/YVWHBG
  6. Panesh, A. Kh. (2013). Formation of professional competencies in teaching network technologies at university. Bulletin of Adyghe State University. Series 3: Pedagogy and Psychology, (2), 72–75. EDN: https://elibrary.ru/REHYUR
  7. Bidaybekov, E. Y. et al. (2020). On teaching future computer science teachers computer networks through network modeling. Bulletin of Abai KazNPU. Series “Physical and Mathematical Sciences”, 72(4), 174–179. https://doi.org/10.51889/2020-4.1728-7901.27. EDN: https://elibrary.ru/IOLRFH
  8. Vakaliuk, T. A. et al. (2020). Using massive open online courses in teaching the subject “Computer networks” to future IT specialists. In ICTERI Workshops (pp. 665–676). EDN: https://elibrary.ru/NKWMPE
  9. Glazunova, O. et al. (2020). Cloudoriented environment for flipped learning of future IT specialists. E3S Web of Conferences, 166, 10014. https://doi.org/10.1051/e3sconf/202016610014. EDN: https://elibrary.ru/XKQEGC
  10. Filippov, V. A. (2019). Syllabus for the academic discipline “Architecture and Technologies of Computer Networks”. Retrieved from: https://www.hse.ru/data/2019/09/12/1491349328/program-2861893857-RHQ3QJmr7K.pdf
  11. Fomin, S. S. (2018). Syllabus for the academic discipline “Management and Monitoring of Computer Networks”. Retrieved from: https://www.hse.ru/data/2019/02/03/1150804799/program-2182286093-S5PDkDyj9C.pdf
  12. Perepelitsa, A. A., & Shavruk, E. Yu. (2021). Telecommunication systems and computer networks: Syllabus for higher education institutions for specialty 1 25 01 12 “Economic Informatics”. Retrieved from: http://edoc.bseu.by:8080/bitstream/edoc/88950/1/Telekommunikatsionnye_sistemy_i_kompyuternye_seti.pdf
  13. Abdul Rashid, N. bin, bin Othman, M. Z., bin Johan, R., & bin Hj. Sidek, S. F. (2019). Cisco Packet Tracer simulation as effective pedagogy in computer networking course. International Journal of Interactive Mobile Technologies, 13(10), 4–18. https://doi.org/10.3991/ijim.v13i10.11283
  14. Uymin, A. G., & Tokarev, G. I. (2022). Instrumental tools for teaching computer networks: Deployment based on Russian software. Control Systems and Information Technologies, (4), 88. https://doi.org/10.36622/VSTU.2022.90.4.019. EDN: https://elibrary.ru/KAMNET
  15. Balyk, N. R. et al. (2022). Cloud labs as a tool for learning Cisco CyberSecurity Operations and DevNet Associate Fundamentals courses. In AET 2020 (pp. 308–318). Retrieved from: https://www.scitepress.org/Papers/2020/109240/109240.pdf
  16. Guerrero, N. D. (n.d.). Educational data mining: A predictive model for Cisco certification exam using classification algorithms. The Research Probe, 1(1), 1–17.
  17. Zhabayev, Y. et al. (2022). The effectiveness of training future computer science teachers in computer networks based on network modelling. Journal of Theoretical and Applied Information Technology, 100(4), 938–947. EDN: https://elibrary.ru/TBSILW
  18. Adedokun Shittu, N. A. et al. (2021). Effect of Cisco Packet Tracer simulator on senior school students’ comprehension and skill acquisition in computer network topology in Nigeria. Nigerian Online Journal of Educational Sciences and Technology, 3(2), 9–14.
  19. Klimova, Yu. O. (2021). Analysis of the compliance of IT graduates’ competency level with employers’ requirements. Territorial Development Issues, 9(1), 5. https://doi.org/10.15838/tdi.2021.1.56.5. EDN: https://elibrary.ru/VZKEYP
  20. Volini, E., Schwartz, J., Eaton, K., & Mallon, D. (n.d.). The workeremployer relationship disrupted: If we’re not a family, what are we? Retrieved from: https://www.deloitte.com/lu/en/services/consulting/perspectives/worker-employer-relationship-disrupted.html (accessed: 20.01.2025)
  21. Ali, C. A., Acquah, S., & Esia Donkoh, K. (2021). A comparative study of SAM and ADDIE models in simulating STEM instruction. African Educational Research Journal, 9(4), 852–859. https://doi.org/10.30918/AERJ.94.21.125. EDN: https://elibrary.ru/DGZABB
  22. Kavitha, V., & Lohani, R. (2019). A critical study on the use of artificial intelligence, elearning technology and tools to enhance the learners’ experience. Cluster Computing, 22(Suppl 3), 6985–6989. https://doi.org/10.1007/s10586-018-2017-2. EDN: https://elibrary.ru/JPCMGJ
  23. Jung, H. et al. (2019). Advanced instructional design for successive elearning: Based on the successive approximation model (SAM). In International Journal on ELearning (pp. 191–204). Association for the Advancement of Computing in Education (AACE).
  24. Wintarti, A. et al. (2019). The instructional design of blended learning on differential calculus using successive approximation model. Journal of Physics: Conference Series, 1417(1), 012064. IOP Publishing.
  25. Egorova, E. et al. (2021). Technology for designing a digital educational course for the university students. In INTED2021 Proceedings (pp. 662–670). IATED.
  26. Basenko, G., & Baskakova, V. (2021). Podcasts in the teaching media space. E3S Web of Conferences, 273, 12122. https://doi.org/10.1051/e3sconf/202127312122. EDN: https://elibrary.ru/QXZMUG
  27. Costa, J. M., Miranda, G. L., & Melo, M. (2022). Four component instructional design (4C/ID) model: A metaanalysis on use and effect. Learning Environments Research, 25(2), 445–463. https://doi.org/10.1007/s10984-021-09373-y. EDN: https://elibrary.ru/BZOYNB
  28. Faber, T. J. E., Dankbaar, M. E. W., & van Merriënboer, J. J. G. (2021). Four Component Instructional Design applied to a game for emergency medicine. In Recent advances in technologies for inclusive well being: Virtual patients, gamification and simulation (pp. 65–82).
  29. Frerejean, J. et al. (2019). Designing instruction for complex learning: 4C/ID in higher education. European Journal of Education, 54(4), 513–524. https://doi.org/10.1111/ejed.12363
  30. Van Merriënboer, J. J. G., & Kirschner, P. A. (2017). Ten steps to complex learning: A systematic approach to four component instructional design. Routledge.
  31. Van Merriënboer, J. J. G., Kester, L., & Paas, F. (2006). Teaching complex rather than simple tasks: Balancing intrinsic and germane load to enhance transfer of learning. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 20(3), 343–352.
  32. Wasson, B., & Kirschner, P. A. (2020). Learning design: European approaches. TechTrends, 64(6), 815–827. https://doi.org/10.1007/s11528-020-00498-0. EDN: https://elibrary.ru/ETRSFL
  33. Litvak, E. G. (2022). Methodology of teaching database design based on the fourcomponent instructional design model. Informatics and Education, 37(4), 46–53. https://doi.org/10.32517/0234-0453-2022-37-4-46-53. EDN: https://elibrary.ru/QHQUNG
  34. Garcia Palacio, G. A. et al. (2018). Aplicación de configuración básica en Routers, Switch y Servidores — Diplomado de profundización Cisco (diseño e implementación de soluciones integradas LAN/WAN).
  35. Uymin, A. G. (2022). Network and system administration. Demonstration exam CODE 1.1 [ebook] (3rd ed., stereotyped). Saint Petersburg: Lan. Retrieved from: https://e.lanbook.com/book/189420

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».