Динамика последовательного роста для ориентированного ациклического диадического графа
- Авторы: Круглый А.Л.1
-
Учреждения:
- Научно-исследовательский институт системных исследований РАН
- Выпуск: № 1 (2014)
- Страницы: 124-138
- Раздел: Статьи
- URL: https://medbiosci.ru/2658-4670/article/view/328558
- ID: 328558
Цитировать
Аннотация
Рассмотрена модель дискретного пространства-времени в микромире. Она представляет собой ориентированный ациклический диадический граф (x-граф). Диадический граф означает, что каждая вершина обладает не больше, чем двумя инцидентными входящими ребрами и двумя инцидентными выходящими ребрами. Эта модель — частный случай причинностного множества, так как множество вершин x-графа — причинностное множество. Рассмотрена динамика последовательного роста. Эта динамика представляет собой стохастическое последовательное добавление новых вершин одна за другой. Новая вершина может быть связана с существовавшей вершиной ребром, только если существовавшая вершина обладает меньше чем четырьмя инцидентными ребрами. Есть четыре типа таких добавлений. Вероятности различных вариантов добавления новой вершины зависят от структуры существовавшего x-графа. Эти вероятности — функции вероятностей случайного выбора ориентированных путей в x-графе. Случайный выбор ориентированных путей основан на бинарных альтернативах. В каждой вершине ориентированного пути мы выбираем одно из двух возможных ребер, чтобы продолжить этот путь. Доказано, что такой алгоритм роста — следствие принципа причинности и некоторых условий симметрии и нормировки. Вероятности представлены в матричной форме. Рассмотрена итерационная процедура вычисления вероятностей. Представлены элементарные операторы эволюции. Второй вариант вычисления вероятностей основан на этих элементарных операторах эволюции.
Ключевые слова
Об авторах
Алексей Львович Круглый
Научно-исследовательский институт системных исследований РАН
Email: akrugly@mail.ru
Отдел прикладной математики и информатики
Дополнительные файлы

