FIRST ESTIMATES OF GREENHOUSE GAS FLUXES ASSOCIATED WITH GROUNDWATER SOURCES IN PERMAFROST OF CENTRAL YAKUTIA
- Authors: Tananaev N.I.1,2,3, Krivenok L.A.4, Baishev N.E.1,5, Pavlova N.A.5
-
Affiliations:
- North-Eastern Federal University named after M.K. Ammosova
- Kamchatka Branch of Federal Research Center "Geophysical Survey of Russian Academy of Sciences"
- Vitus Bering Kamchatka State University
- A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
- P.I. Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 525, No 1 (2025)
- Pages: 160–166
- Section: ATMOSPHERIC AND HYDROSPHERIC PHYSICS
- Submitted: 26.12.2025
- Published: 15.11.2024
- URL: https://medbiosci.ru/2686-7397/article/view/362870
- DOI: https://doi.org/10.7868/S303450652510184
- ID: 362870
Cite item
Abstract
Keywords
About the authors
N. I. Tananaev
North-Eastern Federal University named after M.K. Ammosova; Kamchatka Branch of Federal Research Center "Geophysical Survey of Russian Academy of Sciences"; Vitus Bering Kamchatka State University
Email: tanni@s-vfu.ru
Yakutsk, Russia; Petropavlovsk-Kamchatsky, Russia; Petropavlovsk-Kamchatsky, Russia
L. A. Krivenok
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscow, Russia
N. E. Baishev
North-Eastern Federal University named after M.K. Ammosova; P.I. Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of SciencesYakutsk, Russia; Yakutsk, Russia
N. A. Pavlova
P.I. Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of SciencesYakutsk, Russia
References
- Гарькуша Д. Н. Метан в подземных водах: образование, распределение, миграция и влияние добычи газа по технологии гидроразрыва пласта // Астраханский вестник экологического образования. 2021. № 2(62). С. 72–88.
- Kulongoski J.T., McMahon P.B. Methane emissions from groundwater pumping in the USA // Nature Climate and Atmospheric Science. 2019. V. 2. Art. No. 11.
- Barth-Nafilian E., Sohng J., Saiers J.E. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale // Proceedings of the National Academy of Sciences (PNAS). 2018. V. 115. № 27. P. 6970–6975.
- Olid C., Rodellas V., Rocher-Ros G. et al. Groundwater discharge as a driver of methane emissions from Arctic lakes // Nature Communications. 2022. V. 13. Art. № 3667.
- Lecher A.L., Kessler J., Sparrow K. et al. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites // Limnology and Oceanography. 2015. V. 61. № S1. P. S344–S355.
- Diak M., Böttcher M.E., Ehlert von Ahn C.M. et al. Permafrost and groundwater interaction: current state and future perspective // Frontiers in Earth Sciences. V. 11. Art. № 1254309.
- Kleber G.E., Hodson A.J., Magerl L. et al. Groundwater springs formed during glacial retreat are a large source of methane in the high Arctic // Nature Geoscience. 2023. V. 16. P. 597–604.
- Стрелецкая И.Д., Васильев А.А., Облогов Г.Е. и др. Метан в подземных льдах и мерзлых отложениях на побережье и шельфе Карского моря // Лёд и Снег. 2018. Т. 58. № 1. С. 65–77.
- Elder C.D., Thompson D.R., Thorpe A.K. et al. Characterizing methane emission hotspots from thawing permafrost // Global Biogeochemical Cycles. 2021. V. 35. № 12. Art. № e2020GB006922.
- Heslop J.K., Walter Anthony K.M., Winkel M. et al. A synthesis of methane dynamics in thermokarst lake environments // Earth-Science Reviews. V. 210. Art. № 103365.
- Diak M., Böttcher M.E., Ehlert von Ahn C.M. et al. Permafrost and groundwater interaction: current state and future perspective // Frontiers in Earth Science. 2023. V. 11. Art. № 1254309.
- Sabrekov A.F., Terentieva I.E., McDermid G.J. et al. Methane in West Siberia terrestrial seeps: Origin, transport, and metabolic pathways of production // Global Change Biology. V. 29. № 18. P. 5334–5351.
- Павлова Н.А., Шепелев В.В., Галанин А.А. и др. Гидрохимия подземных вод надмерзлотно-межмерзлотного стока на участках их разгрузки (центральная Якутия) // Водные ресурсы. 2020. Т. 47. № 4. С. 391–401.
- Ефимов А.И. Незамерзающий пресный источник Улахан-Тарын в Центральной Якутии // Исследования вечной мерзлоты в Якутской республике. М.: Изд-во АН СССР, 1952. Вып. 3. С. 60–105.
- Солдатова Е.А., Сидкина Е.С., Кирюхин Б.А. и др. Теохимические условия источника межмерзлотных вод Суллар: вторичное минералообразование и потоки метана // Известия ТПУ. Инжиниринг теореустов. 2023. Т. 334. № 10. С. 16–33.
- Greenhouse gas emissions-fluxes and processes: hydroelectric reservoirs and natural environments. Eds. A. Tremblay, L. Varfalvy, C. Roehm et al. Berlin: Springer, 2005. 732 p.
- Bastviken D., Sundgren I., Natchimuthu S. et al. Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers // Biogeosciences. 2015. № 12. P. 3849–3859.
- UNESCO/IHA GHG measurement guidelines for freshwater reservoirs. Ed. J.A. Goldenfum. London: International Hydropower Association (IHA), 2010. 138 p. https://www.hydropower.org/publications/ghg-measurement-guidelines-for-freshwater-reservoirs (date of application: September 9, 2024).
- Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chemical Geology. 1999. V. 161. P. 291–314.
- Takakai F., Desyatkin A., Larry Lopez C.M. et al. CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia // Journal of Biogeochemical Research: Biogeosciences. 2008. V. 113(G2). G02002.
Supplementary files

