FIRST ESTIMATES OF GREENHOUSE GAS FLUXES ASSOCIATED WITH GROUNDWATER SOURCES IN PERMAFROST OF CENTRAL YAKUTIA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Estimates of methane and carbon dioxide fluxes into the atmosphere, associated with groundwater sources of continuous permafrost in central Yakutia were obtained for the first time. Average methane flux from intensively emitting groundwater springs is 211±85 mgC·m–2·h–1, and carbon dioxide is 93±67 mgC·m–2·h–1, which significantly exceeds fluxes of these gases from many subaerial ecosystems. Dissolved methane concentration is also high and varies from 1.6 to 4.8 mg·L–1. Research results emphasize the importance of groundwater discharge areas as methane sources in continuous permafrost and indicate the need for their further study. This is necessary to more accurately account for their contribution to the overall greenhouse gas balance and to establish the origin of the gases.

About the authors

N. I. Tananaev

North-Eastern Federal University named after M.K. Ammosova; Kamchatka Branch of Federal Research Center "Geophysical Survey of Russian Academy of Sciences"; Vitus Bering Kamchatka State University

Email: tanni@s-vfu.ru
Yakutsk, Russia; Petropavlovsk-Kamchatsky, Russia; Petropavlovsk-Kamchatsky, Russia

L. A. Krivenok

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Moscow, Russia

N. E. Baishev

North-Eastern Federal University named after M.K. Ammosova; P.I. Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences

Yakutsk, Russia; Yakutsk, Russia

N. A. Pavlova

P.I. Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences

Yakutsk, Russia

References

  1. Гарькуша Д. Н. Метан в подземных водах: образование, распределение, миграция и влияние добычи газа по технологии гидроразрыва пласта // Астраханский вестник экологического образования. 2021. № 2(62). С. 72–88.
  2. Kulongoski J.T., McMahon P.B. Methane emissions from groundwater pumping in the USA // Nature Climate and Atmospheric Science. 2019. V. 2. Art. No. 11.
  3. Barth-Nafilian E., Sohng J., Saiers J.E. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale // Proceedings of the National Academy of Sciences (PNAS). 2018. V. 115. № 27. P. 6970–6975.
  4. Olid C., Rodellas V., Rocher-Ros G. et al. Groundwater discharge as a driver of methane emissions from Arctic lakes // Nature Communications. 2022. V. 13. Art. № 3667.
  5. Lecher A.L., Kessler J., Sparrow K. et al. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites // Limnology and Oceanography. 2015. V. 61. № S1. P. S344–S355.
  6. Diak M., Böttcher M.E., Ehlert von Ahn C.M. et al. Permafrost and groundwater interaction: current state and future perspective // Frontiers in Earth Sciences. V. 11. Art. № 1254309.
  7. Kleber G.E., Hodson A.J., Magerl L. et al. Groundwater springs formed during glacial retreat are a large source of methane in the high Arctic // Nature Geoscience. 2023. V. 16. P. 597–604.
  8. Стрелецкая И.Д., Васильев А.А., Облогов Г.Е. и др. Метан в подземных льдах и мерзлых отложениях на побережье и шельфе Карского моря // Лёд и Снег. 2018. Т. 58. № 1. С. 65–77.
  9. Elder C.D., Thompson D.R., Thorpe A.K. et al. Characterizing methane emission hotspots from thawing permafrost // Global Biogeochemical Cycles. 2021. V. 35. № 12. Art. № e2020GB006922.
  10. Heslop J.K., Walter Anthony K.M., Winkel M. et al. A synthesis of methane dynamics in thermokarst lake environments // Earth-Science Reviews. V. 210. Art. № 103365.
  11. Diak M., Böttcher M.E., Ehlert von Ahn C.M. et al. Permafrost and groundwater interaction: current state and future perspective // Frontiers in Earth Science. 2023. V. 11. Art. № 1254309.
  12. Sabrekov A.F., Terentieva I.E., McDermid G.J. et al. Methane in West Siberia terrestrial seeps: Origin, transport, and metabolic pathways of production // Global Change Biology. V. 29. № 18. P. 5334–5351.
  13. Павлова Н.А., Шепелев В.В., Галанин А.А. и др. Гидрохимия подземных вод надмерзлотно-межмерзлотного стока на участках их разгрузки (центральная Якутия) // Водные ресурсы. 2020. Т. 47. № 4. С. 391–401.
  14. Ефимов А.И. Незамерзающий пресный источник Улахан-Тарын в Центральной Якутии // Исследования вечной мерзлоты в Якутской республике. М.: Изд-во АН СССР, 1952. Вып. 3. С. 60–105.
  15. Солдатова Е.А., Сидкина Е.С., Кирюхин Б.А. и др. Теохимические условия источника межмерзлотных вод Суллар: вторичное минералообразование и потоки метана // Известия ТПУ. Инжиниринг теореустов. 2023. Т. 334. № 10. С. 16–33.
  16. Greenhouse gas emissions-fluxes and processes: hydroelectric reservoirs and natural environments. Eds. A. Tremblay, L. Varfalvy, C. Roehm et al. Berlin: Springer, 2005. 732 p.
  17. Bastviken D., Sundgren I., Natchimuthu S. et al. Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers // Biogeosciences. 2015. № 12. P. 3849–3859.
  18. UNESCO/IHA GHG measurement guidelines for freshwater reservoirs. Ed. J.A. Goldenfum. London: International Hydropower Association (IHA), 2010. 138 p. https://www.hydropower.org/publications/ghg-measurement-guidelines-for-freshwater-reservoirs (date of application: September 9, 2024).
  19. Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chemical Geology. 1999. V. 161. P. 291–314.
  20. Takakai F., Desyatkin A., Larry Lopez C.M. et al. CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia // Journal of Biogeochemical Research: Biogeosciences. 2008. V. 113(G2). G02002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».