STUDY OF THE MECHANISMS OF PENETRATION OF SOUND SHOCK INTO A ROOM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the results of numerical modeling of the penetration of a sonic boom into a room through a building window. The calculation results are validated by field measurements of a sonic boom caused by a supersonic aircraft flying at cruising altitude. It is found that the main transmission mechanism is the displacement of the window frame in the window opening as a whole, and not the excitation of the first natural mode of the window. The influence of the stiffness and damping of the sealing of the window unit in the window opening on the passage of a sonic boom is studied. It is found that an increase in both of these parameters significantly reduces the amplitude of the sonic boom inside the room.

About the authors

A. A. Valishina

Lomonosov Moscow State University

Email: alya_valishina@bk.ru
Moscow, Russia

V. V. Vedeneev

Lomonosov Moscow State University

Email: vasily@vedeneev.ru
Moscow, Russia

L. R. Gareev

Lomonosov Moscow State University

Email: gareev@imec.msu.ru
Moscow, Russia

K. A. Zhidyaev

Lomonosov Moscow State University

Email: kirill.a.zhidyaev@imec.msu.ru
Moscow, Russia

References

  1. Chernyshev S.L. Zvukovoi udar. M.: Nauka, 2011. 351 s.
  2. Newberry C. W. The response of buildings to sonic boom // J. Sound Vib. 1967. V. 6 (3). P. 406–418.
  3. Klos J., Buehrle R. D. Vibro-acoustic response of buildings due to sonic boom exposure: june 2006 field test. NASA report TM-2007–214900. 2007.
  4. Klos J. Vibro-acoustic response of buildings due to sonic boom exposure: july 2007 field test. NASA report TM-2008–215349. 2008.
  5. Norén-Cosgriff K., Belyaev I., Lovholt F. Building vibration induced by sonic boom – field test in Russia // Appl. Acoustics. 2022. V. 185. 108422.
  6. Rallabhandi S.K., Mavris D.N. Aircraft Geometry Design and Optimization for Sonic Boom Reduction // J. Aircraft. 2007. V. 44 (1). P. 35–47.
  7. Farhat C., Maute K., Argyow B., Nikbay M. Shape Optimization Methodology for Reducing the Sonic Boom Initial Pressure Rise // AIAA Journal. 2007. V. 45 (5). P. 1007–1018.
  8. Han Z., Qia J., Zhang L., Chen Q., Yang H., Ding Y., Zhang K., Song W., Son B. Recent progress of efficient low-boom design and optimization methods // Prog. Aerospace Sci. 2024. V. 146. 101007.
  9. Ishikawa H., Makino Y., Ueno A., Kanamori M. Sonic Boom Assessment in Primary Boom Carpet of Low-Boom Supersonic Airplane (NASA C25D) // AIAA Scitech 2019 Forum. 2019. AIAA 2019–0298.
  10. Kiselev A. F., Kovalenko V. V., Pritulo T. M. Issledovanie zvukovogo udara: raschet i eksperiment // Inzhenernyi zhurnal: nauka i innovatsii. 2017. № 8 (68).
  11. Rubenko O. V., Makov Yu. N. Zvukovoi udar: ot fiziki nelineinykh voln do akusticheskoi ekologii (obzor) // Akust. zhurn. 2021. T. 67. № 1. S. 3–30.
  12. Vadieiev Kh. F., Kraiko A. N., Tillaeva N. I. Ob uproshchenii chislennykh i analiticheskikh "instrumentov" opisaniia "zvukovogo udara" // ZhVMiMF. 2022. T. 62. № 4. S. 642–658.
  13. Chernyshev S. L. O rasprostranenii volny zvukovogo udara v turbulentnoi srede // Uch. zap. TsAGI. 2018. T. XXXVII. № 3. S. 52–61.
  14. Yudashev P. V., Karlova M. M., Khokhlova V. A., Blan-Belon F. Chislennoe modelirovanie nelineinogo parabolicheskogo uravneniia dlia analiza statistiki vospriinimaemogo urovnia shuma volny zvukovogo udara posle prokhozhdeniia turbulentnogo sloia atmosfery // Akust. zhurn. 2021. T. 67. № 1. S. 31–44.
  15. Remillieux M. C., Burdisso R. A., Reichard G. Transmission of sonic booms into a rectangular room with a plaster–wood wall using a modal–interaction model // J. Sound Vib. 2009. V. 327. P. 529–556.
  16. Sizov N.V., Plotkin K.J., Hobbs C.M. Predicting transmission of shaped sonic booms into a residential house structure // J. Acoust. Soc. Am. 2010. V. 127 (6). P. 3347–3355.
  17. Remillieux M.C., Corcoran J.M., Haac T.R., Burdisso R.A., Svensson U.P. Experimental and numerical study on the propagation of impulsive sound around buildings // Appl. Acoust. 2012. V. 73. P. 1029–1044.
  18. Remillieux M.C. External pressure loading, vibration, and acoustic responses at low frequencies of building components exposed to impulsive sound // Appl. Acoust. 2012. V. 73. P. 1059–1075.
  19. Ou D., Ming Mak C. The effects of elastic supports on the transient vibroacoustic response of a window caused by sonic booms // J. Acoust. Soc. Am. 2011. V. 130 (2). P. 783–790.
  20. Ou D., Ming Mak C. Minimizing the transient vibroacoustic response of a window to sonic booms by using stiffeners // J. Acoust. Soc. Am. 2014. V. 135 (4). P. 1672–1675.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).