ON A GRID-CHARACTERISTIC SECOND ORDER SCHEME FOR SYSTEMS OF HYPERBOLIC EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS ON NON-FITTED MESHES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, a novel approach to increasing the accuracy of the grid-characteristic method in the area of a coefficient jump for cases of an non-fitted computational grid is presented.

作者简介

K. Shilnikov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Moscow Institute of Physics and Technology, MIPT, Phystech

Moscow, Russia

N. Khokhlov

Moscow Institute of Physics and Technology, MIPT, Phystech; Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”; Autonomous noncommercial organization of higher education "Innopolis University

Email: khokhlov.ni@mipt.ru
Moscow, Russia

I. Petrov

Moscow Institute of Physics and Technology, MIPT, Phystech

Corresponding member of the RAS Moscow, Russia

参考

  1. Peskin C.S. Numerical analysis of blood flow in the heart // J. Comput. Phys. 1977. № 25. P. 220–252.
  2. Golubel V. et al. Compact Grid-Characteristic Scheme for the Acoustic System with the Piece-Wise Constant Coefficients // Int. J. Appl. Mech. 2022. V. 14. № 02. P. 2250002.
  3. Khokhlov N.I., Petrov I.B. On one class of high-order compact grid-characteristic schemes for linear advection // Russ. J. Numer. Anal. Math. Model. 2016. V. 31. № 6. P. 355–368.
  4. Хохлов Н.И., Петров И.Б. Сеточно-характеристический метод повышенного порядка для систем гиперболических уравнений с кусочно-постоянными коэффициентами // Дифференциальные уравнения. 2023. T. 59. № 7. C. 983–995.
  5. Stogni P.V., Khokhlov N.I., Petrov I.B. The numerical solution of the problem of the contact interaction in models with gas pockets // J. Phys. Conf. Ser. 2021. V. 1715. № 1. P. 012058.
  6. Khokhlov N., Favorskaya A., Stetsyk V., Mitkovets I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // J. Comput. Phys. 2021. V. 446. P. 110637.
  7. Khokhlov N.I., Favorskaya A., Furgailo V. Grid-Characteristic Method on Overlapping Curvilinear Meshes for Modeling Elastic Waves Scattering on Geological Fractures // Minerals. 2022. V. 12. № 12. P. 1597.
  8. Кожемяченко А.А., Петров И.Б., Фаворская А.В., Хохлов Н.И Граничные условия для моделирования воздействия колес на железнодорожный путь // Ж. вычисл. матем. и матем. физ. 2020. T. 60. № 9. C. 1587–1603.
  9. Kaser M., Dumbser M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms // Geophys. J. Int. 2006. V. 166. № 2. P. 855–877.
  10. Lisitsa V., Podgornova O., Teheverda V. On the interface error analysis for finite difference wave simulation // Comput. Geosci. 2010. V. 14. № 4. P. 769–778.
  11. Feng Q., Han B., Minev P. Sixth-order hybrid finite difference methods for elliptic interface problems with mixed boundary conditions // J. Comput. Phys. 2024. V. 497. P. 112635.
  12. LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002. 558 p.
  13. Zhang C., LeVeque R.J. The immersed interface method for acoustic wave equations with discontinuous coefficients // Wave Motion. 1997. V. 25. № 3. P. 237–263.
  14. Тихонов А.Н., Самарский А.А. Однородные разностные схемы на неравномерных сетках // Ж. вычисл. матем. и матем. физ. 1962. T. 2. № 5. С. 812–832.
  15. Zhang C., Symes W.W. Fourth order, full-stencil immersed interface method for elastic waves with discontinuous coefficients // SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists. 1998. P. 1929–1932.
  16. Piraux J., Lombard B. A New Interface Method for Hyperbolic Problems with Discontinuous Coefficients: One-Dimensional Acoustic Example // J. Comput. Phys. 2001. V. 168. № 1. P. 227–248.
  17. Lombard B., Piraux J. Numerical treatment of two-dimensional interfaces for acoustic and elastic waves // J. Comput. Phys. 2004. V. 195. № 1. P. 90–116.
  18. Sabatini R. An arbitrary-order immersed interface method for the two-dimensional propagation of acoustic and elastic waves // Phys. Fluids. 2023. V. 35. № 10. P. 107106.
  19. Tsoutsanis P., Titarev V.A., Drikakis D. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions // J. Comput. Phys. 2011. V. 230. № 4. P. 1585–1601.
  20. Abraham D.S., Marques A.N., Nave J.C. A correction function method for the wave equation with interface jump conditions // J. Comput. Phys. 2018. V. 353. № 10. P. 281–299.
  21. Tong F. et al. How to obtain an accurate gradient for interface problems? // J. Comput. Phys. 2020. V. 405. P. 109070.
  22. Bilbao S. Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The one-dimensional case // J. Acoust. Soc. Am. 2023. V. 153. № 4. P. 2023.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).