АСИМПТОТИКА ФУНКЦИИ ЦЕНЫ В МОДЕЛЯХ ЭКОНОМИЧЕСКОГО РОСТА

Обложка

Цитировать

Полный текст

Аннотация

Исследуется асимптотическое поведение функции цены в задаче управления на бесконечным горизонте с неограниченно растущем подынтегральном индексом, дисконтированном в целевом функционале. Задачи управления такого типа связаны с анализом трендов траекторий в моделях экономического роста. Получено выражение свойств стабильности функции цены в инфинитезимальной форме. Такое представление обеспечивает совпадение функции цены с обобщенным минимаксным решением уравнения Гамильтона-Якоби. Установлено, что краевое условие для функции цены подменяется свойством подлинейной асимптотики. Приводится пример, иллюстрирующий построение функции цены как обобщенного минимаксного решения в моделях экономического роста.

Полный текст

Условия стабильности играют ключевую роль в теории оптимального управления и теории дифференциальных игр.
×

Об авторах

Александр Леонидович Багно

ФГАОУ ВО «Уральский федеральный университет им. первого Президента России Б. Н. Ельцина»

Email: bagno.alexander@gmail.com
аспирант, кафедра прикладной математики 620002, Российская Федерация, г. Екатеринбург, ул. Мира, 19

Александр Михайлович Тарасьев

ФГАОУ ВО «Уральский федеральный университет им. первого Президента России Б. Н. Ельцина»; ФГБУН «Институт математики и механики им. Н. Н. Красовского УрО РАН»

Email: tam@imm.uran.ru
доктор физико-математических наук, зав. отделом динамических систем; профессор 620002, Российская Федерация, г. Екатеринбург, ул. Мира, 19; 620990, Российская Федерация, г. Екатеринбург, ул. С. Ковалевской, 16

Список литературы

  1. Тарасьев А.М., Успенский А.А., Ушаков В.Н. Аппроксимационные схемы и конечно-разностные операторы для построения обобщенных решений уравнений Гамильтона-Якоби // Известия АН СССР. Техническая кибернетика. 1994. № 3. С. 173-185.
  2. Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974. 456 с.
  3. Субботин А.И. Минимаксные неравенства и уравнения Гамильтона-Якоби. М.: Наука, 1991. 216 с.
  4. Субботин А.И., Тарасьев А.М. Сопряженные производные функции цены дифференциальной игры // Доклады Академии наук СССР. 1985. Т. 283. № 3. С. 559-564.
  5. Субботина Н.Н., Колпакова Е.А., Токманцев Т.Б., Шагалова Л.Г. Метод характеристик для уравнений Гамильтона-Якоби-Беллмана. Екатеринбург: УрО РАН, 2013. 244 с.
  6. Султанова Р.А. Минимаксные решения уравнений в частных производных: дис.. канд. физ.-мат. наук. Екатеринбург, 1995. 192 с.
  7. Crandall M.G., Lions P.-L. Viscosity solutions of Hamilton-Jacobi equations // Trans. Amer. Math. Soc. 1983. Vol. 277. № 1. P. 1-42.
  8. Асеев С.М., Кряжимский А.В. Принцип максимума Понтрягина и задачи оптимального роста // Труды Математического института им. В.А. Стеклова АН СССР. 2007. Т. 257. С. 5-271.
  9. Багно А.Л., Тарасьев А.М. Свойства функции цены в задачах оптимального управления с бесконечным горизонтом // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2016. Т. 26. Вып. 1. C. 3-14.
  10. Никольский М.С. О локальной липшицевости функции Беллмана в одной оптимизационной задаче // Труды Института математики и механики Уральского отделения РАН. 2004. Т. 10. № 2. С. 106-115.
  11. Адиатулина Р.А., Тарасьев А.М. Дифференциальная игра неограниченной продолжительности // Прикладная математика и механика. 1987. Т. 51. Вып. 4. С. 531-537.
  12. Capuzzo Dolcetta I.C., Ishii H. Approximate solution of the Bellman equation of deterministic control theory // Appl. Math. Optimiz. 1984. Vol. 11. № 2. P. 161-181.
  13. Klaassen G., Tarasyev A.M., Kryazhimskii A.V. Multiequilibrium game of timing and competition of gas pipeline projects // Journal of Optimization Theory and Applications. 2004. Vol. 120. № 1. P. 147-179.
  14. Tarasyev A.M. Control synthesis in grid schemes for Hamilton-Jacobi equations // Annals of Operations Research. 1999. Vol. 88. P. 337-359.
  15. Интрилигатор М. Математические методы оптимизации и экономическая теория; пер. с англ. Г.И. Жуковой, Ф.Я. Кельмана. М.: Айрис-пресс, 2002. 576 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).