О НЕЯВНЫХ ДИФФЕРЕНЦИАЛЬНЫХ НЕРАВЕНСТВАХ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ
- Авторы: Серова И.Д.1
-
Учреждения:
- Тамбовский государственный университет им. Г.Р. Державина
- Выпуск: Том 22, № 3 (2017)
- Страницы: 571-578
- Раздел: Статьи
- URL: https://medbiosci.ru/2686-9667/article/view/362845
- DOI: https://doi.org/10.20310/1810-0198-2017-22-3-571-578
- ID: 362845
Цитировать
Полный текст
Аннотация
Об авторах
Ирина Дмитриевна Серова
Тамбовский государственный университет им. Г.Р. Державина
Email: irinka_36@mail.ru
студент, институт математики, естествознания и информационных технологий г. Тамбов, Российская Федерация
Список литературы
-
Чаплыгин С.А. Основания нового способа приближённого интегрирования дифференциальных уравнений. М., 1919 (Собрание сочинений I. Гостехиздат, 1948. С. 348-368). Избранные труды Н.В. Азбелева / отв. ред. В.П. Максимов, Л.Ф. Рахматуллина. Москва; Ижевск: Ин-т компьютер. исслед., 2012. 808 с. Булгаков А.И. О колеблемости решений систем дифференциальных уравнений второго порядка // Дифференциальные уравнения. 1987. Т. 23. № 2. С. 204-217. Пеньков В.Б., Жуковская Т.В., Саталкина Л.В. О разрешимости и оценках решений дифференциального уравнения с запаздыванием, зависящим от искомой функции // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2011. Т. 16. Вып. 3. С. 748-751. Жуковский Е.С. Об интегральных неравенствах в пространствах суммируемых функций // Дифференциальные уравнения. 1982. Т. 18. № 4. С. 580-584. Жуковский Е.С. Неравенства Вольтерра в функциональных пространствах // Математический сборник. 2004. Т. 195. № 9. С. 3-18. Жуковский Е.С. Об упорядоченно накрывающих отображениях и неявных дифференциальных неравенствах // Дифференциальные уравнения. 2016. Т. 52. № 12. С. 1605-1621. Жуковская Т.В., Забродский И.А., Серова И.Д. О функциональных неравенствах // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2016. Т. 21. Вып. 6. С. 1963-1968. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for mappings in partially ordered spaces // Topology and its Applications. 2015. V. 179. №1. P. 13-33. doi: 10.1016/j.topol.2014.08.013 Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for set-valued mappings in partially ordered spaces // Topology and its Applications. 2016. V. 201. P. 330-343. Арутюнов А.В., Жуковский Е.С., Жуковский С.Е. О точках совпадения отображений в частично упорядоченных пространствах // Доклады Академии наук. 2013. Т. 453. №5. С. 475-478. Арутюнов А.В., Жуковский Е.С., Жуковский С.Е. Точки совпадения многозначных отображений в частично упорядоченных пространствах // Доклады академии наук. 2013. Т. 453. №6. С. 595-598. Коллатц Л. Функциональный анализ и вычислительная математика. М.: Мир, 1969. 448 с. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981. 544 с. Борисович Ю.Г.,Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многозначных отображений и дифференциальных включений. М.: ЛИБРОКОМ, 2011. 224 с. Данфорд Н., Шварц Дж. Линейные операторы. Т. 1. Общая теория. М.: ИЛ, 1962. 896 с.
Дополнительные файлы



