Analysis of advanced transpedicular screw machining technologies

Cover Page

Cite item

Full Text

Abstract

Abstract: The purpose is to improve the machining efficiency of titanium alloy transpedicular screws on highperformance machine-tools based on the selection of advanced technological approaches, and to analyze the current manufacturing technology of implants on CNC machines of the semi-automatic longitudinal turning lathe type. The efficiency is assessed using the following criteria: process performance determined by the machine time and the quality of implant processing (surface roughness, geometric accuracy, mechanical properties). It is found that semi -automatic longitudinal lathes equipped with a collet feed system and drive heads for thread whirling allow processing the implants of the transpedicular screw type in a single set-up with maximum efficiency. It is shown that the machining technology of transpedicular screws is largely determined by the features of their design. The type and shape of the thread have the greatest influence on the used cutting tool and cutting modes. The analysis of screw breakages revealed that the main failure reasons are design defects and poor machining quality of the threaded part. It is determined that the use of the thread whirling method makes it possible to obtain the thread in one cutting pass and, therefore, significantly increase the machining performance compared to the traditional technology without any loss of quality. Additional advantages of this method are the reduction in the number of tools used and follow-on finishing deburring operations. Based on the conducted analysis the manufacture of transpedicular titanium alloy screws is recommended to perform using advanced cutting tools, primarily thread whirling cutters ensuring 4 times increase in machining performance without any loss of the processed item quality and 2 times reduced surface roughness. In this case the temperature in the cutting zone decreases, which has a positive effect on processed product service life. The condition for the effective use of the cutters is equipping of the machine-tools involved in the technological process with special drive heads.

About the authors

A. V. Savilov

Irkutsk National Research Technical University

Email: saw@ex.istu.edu

A. S. Pyatykh

Irkutsk National Research Technical University

Email: pyatykhas@ex.istu.edu

S. A. Timofeev

Irkutsk National Research Technical University

Email: sevans@ex.istu.edu

References

  1. Savilov A.V., Svinin V.M., Timofeev S.A. Studies on titanium alloy turning rate improvement // Lecture Notes in Mechanical Engineering: Proceedings of the 5th International Conference on Industrial Engineering. 2019. Р. 1027–1033. https://doi.org/10.1007/978-3-030-22063-1_109
  2. Lam Tu-Ngoc, Trinh Minh-Giam, Huang Chih-Chieh, Kung Pei-Ching, Huang Wei-Chin, Chang Wei, et al. Investigation of bone growth in additive-manufactured pedicle screw implant by using Ti-6Al-4V and bioactive glass powder composite // International Journal of Molecular Sciences. 2020. Vol. 21. Issue 20. https://doi.org/10.3390/ijms21207438
  3. Shi Liang-Yu, Wang An, Zang Fa-Zhi, Wang Jian-Xi, Pan Xian-Wei, Chen Hua-Jiang, et al. Tantalum-coated pedicle screws enhance implant integration // Colloids and Surfaces B: Biointerfaces. 2017. Vol. 160. Р. 22–32. https://doi.org/10.1016/j.colsurfb.2017.08.059
  4. Becker Y.N., Motsch N., Hausmann J., Breuer U.P. Hybrid composite pedicle screw - finite element modelling with parametric optimization // Informatics in Medicine Unlocked. 2020. Vol. 18. https://doi.org/10.1016/j.imu.2020.100290
  5. Kang Kyoung-Tak, Koh Yong-Gon, Son Juhyun, Yeom Jin S., Park Joon-Hee, Kim Ho-Joong. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiberreinforced polyetheretherketone, and traditional titanium as rod materials // Composites Part B: Engineering. 2017. Vol. 130. Р. 248–256. https://doi.org/10.1016/j.compositesb.2017.07.052
  6. Rosa G., Clienti C., Mineo R., Audenino A. Experimental analysis of pedicle screws // Procedia Structural Integrity. 2016. Vol. 2. Р. 1244–1251. https://doi.org/10.1016/j.prostr.2016.06.159
  7. Le Cann S., Tudisco E., Turunen M.J., Patera A., Mokso R., Tägil M., et al. Investigating the mechanical characteristics of bone-metal implant interface using in situ synchrotron tomographic imaging // Frontiers in Bioengineering and Biotechnology. 2019. https://doi.org/10.3389/fbioe.2018.00208
  8. Abshire B.B., McLain R.F., Valdevit A., Kambic H.E. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out // Spine Journal. 2001. Vol. 1. Issue 6. Р. 408–414. https://doi.org/10.1016/S1529-9430(01)00119-X
  9. Shea T.M., Laun J., Gonzalez-Blohm S.A., Doulgeris J.J., Lee William E., Aghayev K., et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status // BioMed Research International. 2014. https://doi.org/10.1155/2014/748393
  10. Kubiak A.J., Lindqvist-Jones K., Dearn K.D., Dunkan E.T. Shepherd. Comparison of the mechanical properties of two designs of polyaxial pedicle screw // Engineering Failure Analysis. 2019. Vol. 95. Р. 96–106. https://doi.org/10.1016/j.engfailanal.2018.08.023
  11. Kemény A., Hajdu I., Károly D., Pammer D. Osseointegration specified grit blasting parameters // Materials Today: Proceedings. 2018. Vol. 5. Issue 13. Part 2. P. 26622–26627. https://doi.org/10.1016/j.matpr.2018.08.126
  12. Wu D., Spanou A., Diez-Escudero A., Persson C. 3Dprinted PLA/HA composite structures as synthetic trabecular bone: a feasibility study using fused deposition modeling // Journal of the Mechanical Behavior of Biomedical Materials. 2020. Vol. 103. https://doi.org/10.1016/j.jmbbm.2019.103608
  13. Balaji J.H., Krishnaraj V., Yogesvaraj S. Investigation on high speed turning of titanium alloys // Procedia Engineering. 2013. Vol. 64. Р. 926–935. https://doi.org/10.1016/j.proeng.2013.09.169
  14. Krainev D.V., Polyanchikova M.Yu., Bondarev A.A. Influence of the surface layer characteristics on the regularities of the cutting process // International Conference on Modern Trends in Manufacturing Technologies and Equipment: Web of Conferences. 2017. 129. No. 3. https://doi.org/10.1051/matecconf/201712901045
  15. Altintas Y., Chan P.K. In-process detection and suppression of chatter in milling // International Journal of Machine Tools and Manufacture. 1992. Vol. 32. Issue 3. Р. 329–347. https://doi.org/10.1016/0890-6955(92)90006-3
  16. Svinin V.M., Astakhov D.M. Control of self-excited vibrations in face milling with two-rim mill // Control of selfexcited vibrations in face milling with two-rim mill: Materials Science and Engineering: IOP Conference Series. 2019. Vol. 632. https://doi.org/10.1088/1757-899X/632/1/012111
  17. Roukema J.С., Altintas Yu. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation // International Journal of Machine Tools and Manufacture. 2007. Vol. 47. Issue 9. Р. 1455–1473. https://doi.org/10.1016/j.ijmachtools.2006.10.005
  18. Roukema J.С., Altintas Yu. Generalized modeling of drilling vibrations. Part II: Time domain model of drilling kinematics, dynamics and hole formation // International Journal of Machine Tools and Manufacture. 2007. Vol. 47. Issue 9. Р. 1455–1485. https://doi.org/10.1016/j.ijmachtools.2006.10.006
  19. Serebrennikova A.G., Nikolaeva E.P., Savilov A.V., Timofeev S.A., Pyatykh A.S. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning // Journal of Physics: Conference Series. 2018. Vol. 944. https://doi.org/10.1088/1742-6596/944/1/012104
  20. Budak E., Kops L. Improving Productivity and Part Quality in Milling of Titanium Based Impellers by Chatter Suppression and Force Control // CIRP Annals. 2000. Vol. 49. Issue 1. P. 31–36. https://doi.org/10.1016/S0007-8506(07)62890-X

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).