The use of tool materials for monitoring the state of cutting technological systems

Cover Page

Cite item

Full Text

Abstract

 The aim was to develop a methodology for monitoring the dynamic state of the links “machine tool – device – cutting tool – detail” comprising a cutting technological system as applied to turning specialized stainless steels using replaceable standard hardmetal inserts. The research object was the hard-to-treat non-corrosive stainless steels 09Х17Н7Ю, 12Х18Н10Т and 13Х15Н5 АМ-3. Monitoring was carried out by simulating plate coatings in the Deform software environment. The diagnostic criterion was the tool life period up to the wear level of 0.5 mm along the rear edge. The effect of coatings on the tool life period was assessed according to the following parameters: temperature in the cutting zone, tension in the tool material and tool deformation. As a result, 10 optimal coatings having the greatest impact on the state of the cutting technological system under study were selected. These coatings can be used for diagnosing the state of cutting technological systems. The coatings were distinguished in terms of architecture (design, composition,structure and coating method). A technique for monitoring and managing the state of cutting technological systems according to the results of diagnostics was proposed. The deviation of the revealed state of the cutting technological system from the desired state was estimated by the life period of tools with different coatings for the same time of their operation. The state of the system under study was considered effective provided that the maximum tool life period due to the use of an optimal coating was achieved. A technique allowing assessment of the state of technological cutting systems by their simulation according to the parameters “temperature in the cutting zone”, “tension in the tool material” and “tool deformation” was proposed. This technique also permits monitoring of the state of cutting systems by the parameter "tool life period" and managing their state according to the results of diagnostics through the use of the most optimal plate coatings. The developed technique can be used to reveal the optimal parameters of the cutting mode of hard-to-treat specialized corrosion-resistant steels.  

About the authors

В. Ya. Mokritskiy

Komsomolsk-na-Amure State University

Email: boris@knastu.ru

V. Yu. Shelkovnikov

Komsomolsk-na-Amure State University

Email: ttechnopark@yandex.ru

References

  1. Bouzakis K.D., Michailidis N., Skordaris G., Bouzakis E., Biermann D., M’Saoubi R. Cutting with coated tools: coating technologies, characterization methods and performance optimization // CIRP Annals. 2012. Vol. 61. Iss. 2. P. 703–723. https://doi.org/10.1016/j.cirp.2012.05.006
  2. Özel T., Altan T. Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting // International Journal of Machine Tools & Manufacture. 2000. Vol. 40. Iss. 1. P. 133–152. https://doi.org/10.1016/S0890-6955(99)00051-6
  3. Chandrakanth Shet, Xiaomin Deng. Finite element analysis of the orthogonal metal cutting process // Journal of Materials Processing Technology. 2000. Vol. 105. Iss. 1-2. P. 95–109.
  4. Shatla M., Kerk Ch., Altan T. Process modeling in machining. Part I: determination of flow stress data // International Journal of Machine Tools & Manufacture. 2001. Vol. 41. Р. 1511–1534. http://doi.org/10.1016/s0890-6955(01)00016-5
  5. Rao G.V.G., Mahajan Р., Bhatnagar N. Micromechanical modeling of machining of FRP composites – cutting force analysis // Composites Science and Technology. 2007. Vol. 67. Iss. 3-4. P. 579–593. https://doi.org/10.1016/j.compscitech.2006.08.010
  6. Morozova A., Mokritskii B., Vereshchagin V. Structure simulation and analysis of metal-cutting tool simulation results // Aviamechanical engineering and transport (AVENT 2018): Proceedings of the International Conference. 2018. Р. 286–291. https://doi.org/10.2991/avent-18.2018.55
  7. Beake B.D., Fox-Rabinovich G.S., Losset Yа., Yamamoto K., Aguirre M.H., Veldhuis S.C., et al. Why can TiAlCrSiYN-based adaptive coatings deliver exceptional performance under extreme frictional conditions // Faraday Discussions. 2012. Vol. 156.. URL: https://pubs.rsc.org/en/content/articlelanding/2012/FD/c2f d00131d#!divAbstract (12.03.2020).
  8. Zhang Hua, Deng Zhaohui, Fu Yahui, Lv Lishu, Yan Can. A process parameters optimization method of multipass dry milling for high efficiency, low energy and low carbon emissions // Journal of Cleaner Production. 2017. Vol. 148. P. 174–184.
  9. Mokritskii B.Yа., Pustovalov D.A., Vereschaka A.A., Vereschaka A.S., Verhoturov A.D. Evaluation of efficiency of edge tool on the basis of new technique for analyzing parameters of scribing mark // Applied Mechanics and Materials. 2015. Vol. 719–720. P. 96–101. https://doi.org/10.4028/www.scientific.net/AMM.719720.96
  10. Fox-Rabinovich G.S., Weatherley G.C., Dodonov A.I., Kovalev A.I., Shuster L.S., Dosbaeva G.K., et al. Nanocrystalline filtered arc deposited (FAD) TiAlN PVD coatings for high-speed machining applications // Surface and Coatings Technology. 2004. Vol. 177–178. P. 800–811. https://doi.org/10.1016/j.surfcoat.2003.05.004
  11. Матвеев В.И. Точные измерения – основа качества и безопасности // Контроль. Диагностика. 2019. № 8. С. 4–11. https://doi.org/10.14489/td.2019.08.pp.004-011
  12. Mokritskii B.Y., Pustovalov D.A., Vereschaka A.A., Vereschaka A.S., Verhoturov A.D. Evaluation of Efficiency of Edge Tool on the Basis of New Technique for Analyzing Parameters of Scribing Mark // Applied Mechanics and Materials. 2015. Vol. 719–720. P. 96–101. https://doi.org/10.4028/www.scientific.net/AMM.719720.96
  13. Vereschaka A.A., Mokritskii B.Yа., Sitnikov N., Oganyan G.V., Aksenenko A.Yu., Mokritskii B.J. Study of Mechanism of Failure and Wear of Multi-Layered Composite Nano-Structured Coating Based on System Ti-TiN(ZrNbTi)N Deposited on Carbide Substrates // Journal of Nano Research. 2017. Vol. 45. P. 110–123. https://doi.org/10.4028/www.scientific.net/JNanoR.45.110
  14. Dobryshkin A., Sysoev O.E., Nyein Sitt Naing. Modeling of the opened shell forced vibrations with a small associated mass, with hinged operation by the Pade’ aproximation method // Materials Science and Engineering: IOP Conference Series. 2020. Vol. 753. Chapter 2. https://doi.org/10.1088/1757-899x/753/3/032024
  15. Zaychenko I.V., Bazheryanu V.V., Gordin S.A. Improving the energy efficiency of autoclave equipment by optimizing the technology of manufacturing parts from polymer composite materials // Materials Science and Engineering: IOP Conference Series. 2020. Vol. 753. Chapter 2. https://doi.org/10.1088/1757-899X/753/3/032069
  16. Vasilchenko S., Cherny S., Khrulkov V. Improving Dynamic and Energy Characteristics of Electromechanical Systems with Single-Phase Rectifiers // International Conference on Industrial Engineering, Applications and Manufacturing. 2020. https://doi.org/10.1109/ICIEAM48468.2020.9111902
  17. Одиноков В.И., Евстигнеев А.И., Дмитриев Э.А. Численное моделирование процесса заполнения металлом кристаллизатора с отражателем УНРС // Известия высших учебных заведений. Черная Металлургия. 2019. Т. 62. №. 10. Р. 747–755. https://doi.org/10.17073/0368-0797-2019-10-747-755
  18. Bashkov O., Li Xuewei, Bao Fengyuan, Kim V.A., Zhou Changhai. Acoustic emission that occurs during the destruction of coatings applied by microarc oxidation on an aluminum alloy // International Conference on Modern Trends in Manufacturing Technologies and Equipment (Sevastopol, 09–13 September 2019). Sevastopol, 2019. Vol. 19. Part 5. P. 2522–2525. https://doi.org/10.1016/j.matpr.2019.08.174
  19. Odinokov V.I., Dmitriev E.A., Evstigneev A.I. Simulation of molten metal pouring into the continuous casting machine mold // International Conference on Modern Trends in Manufacturing Technologies and Equipment (Sevastopol, 09–13 September 2019). Sevastopol, 2019. Vol. 19. Part 5. P. 2274–2277. https://doi.org/10.1016/j.matpr.2019.07.596
  20. Li X., Bashkov O.V., Bao F., Kim V.A., Zhou C., Shakirova O.G. The research of the features destruction of the of oxide coatings on aluminum alloy by using the method of acoustic emission // 14th International Conference on Films and Coatings: Journal of Physics Conference Series. 2019. Vol. 1281. https://doi.org/10.1088/1742-6596/1281/1/012050
  21. Чирков А.П. Роль метрологического обеспечения в инновационной деятельности // Главный метролог. 2013. № 1. С. 20–24.
  22. Ситамов Э.С., Мокрицкий Б.Я. Результаты сравнительного исследования износостойкости твердосплавного инструмента при обработке нержавеющей стали // Металлообработка. 2018. № 4. С. 7–13.
  23. Чирков А.П. Количественная оценка влияния метрологии на экономику // Справочник. Инженерный журнал. 2013. № 8. С. 45–51. 24. Матвеев В.И. Точные измерения – основа качества и безопасности // Контроль. Диагностика. 2019. № 8. С. 4–11. https://doi.org/10.14489/td.2019.08.pp.004-011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).