On the question of using solid electrodes in the electrolysis of cryolite-alumina melts. Part 2. The mechanism of passivation and conditions of stable electrolysis
- Authors: Gorlanov Е.S.1
-
Affiliations:
- EXPERT-AL LLC
- Issue: Vol 25, No 1 (2021)
- Pages: 108-121
- Section: Metallurgy
- URL: https://medbiosci.ru/2782-4004/article/view/382237
- DOI: https://doi.org/10.21285/1814-3520-2021-1-108-121
- ID: 382237
Cite item
Full Text
Abstract
The aim was to investigate the mechanism of passivation of polycrystalline cathodes and to justify experimentally the possibility of stable electrolysis when using solid electrodes. Under laboratory conditions, the mechanism of electrode passivation and the conditions for stable electrolysis were experimentally studied. To this end, the methods of X-ray phase analysis and electron-microscopic examination of the spent electrodes were employed. A study of the electrolysis of cryolite-alumina melts showed that, in the presence of surface micro- and microdefects on a solid cathode, a precipitate consisting of impurities and electrolyte components was gradually formed. Under the selected experimental conditions, the surface of carbon cathodes was passivated with a dense double-layer precipitate of CaB6 and electrolyte components. Using the example of a carbon cathode containing both metallic titanium and titanium oxides, a method for eliminating surface microdefects is presented. This method consists in electrochemical borating of a carbon-titanium cathode. The conducted spectral electron microscopic and energy-dispersive analysis found that, during a 45-hour laboratory experiment at 980 °C and under a current density of 0.7 A/cm2, the inhomogeneous surface of the cathode was homogenized with a titanium diboride layer. At stable electrolysis parameters, an aluminum layer is electrodeposited on the cathode. A complex analysis of the electrolysis conditions, the appearance of the initial and spent carbon cathodes, and the data of analytical studies confirmed that micro- and macrodefects of the electrode cause the formation of a dense layer of deposits on the cathode. The established mechanism of passivation of a carbon cathode as a polycrystalline product can be applied to all composite electrodes, including those based on titanium diboride. A logical condition for the practical application of solid cathodes is the development of an electrolysis process with continuous surface reconditioning to decrease the chemical inhomogeneity and microdefects of the surface across the entire technological sequence.
References
- Patente no. 175711, France. Procédé électrolytique pour la préparation de l’aluminium / P. L-T. Héroult. Déposé 23.04.1886; publ. 01.09.1886.
- Patent no. 400766, The United States of America. Process of Reducing Aluminum by Electrolysis / Ch. M. Hall; no. 207601. Filed 9.07.1886; publ. 2.04.1889.
- Patent no. 400667, United States of America. Process of electrolyzing crude salts of aluminium / Ch. M. Hall; no. 286034. Filed 21.09.1888; publ. 2.04.1889.
- Haupin W., Frank W. Current and energy efficiency of Hall-Heroult cells - past, present and future // Light Metal Age. 2002. Vol. 60. No. 5-6. Р. 6–13.
- Vanvoren C., Homsi P., Basquin J.L., Beheregaray T. AP 50: The Pechiney 500 kA Cell. // Essential Readings in Light Metals / eds. G. Bearne, M. Dupuis, G. Tarcy. Springer, Cham, 2016. Р. 462–467. https://doi.org/10.1007/978-3-319-48156-2_66
- Dupuis M. Thermo-electric design of a 740 kA cell, is there a size limit? // Aluminium. 2005. Vol. 81. No. 4. P. 324–327.. URL: http://www.genisim.qc.ca/download/740ka.pdf (16.08.2020).
- Tabereaux A. Super-high amperage prebake cell technologies in operation at worldwide aluminum smelters // Light Metals Age. 2017. Vol. 75. No. 1. P. 26–29.
- Bardai A., Aga B.E., Berveling A., Droste C., Fechner M., Haugland E., et al. HAL4e – Hydro’s new generation cell technology // Light Metals. 2009. Vol. 2009. P. 371–375.
- Gao Bingliang, Wang Zhaowen, Shi Zhongning, Hu Xianwei. History and Recent Developments in Aluminum Smelting in China // Proceedings of 35th International ICSOBA Conference (Hamburg, 2–5 October 2017). Hamburg, 2019. P. 53–68.. URL: https://vdocuments.mx/reader/full/history-and-recentdevelopments-in-aluminum-smelting-in-papers-history-and (16.08.2020).
- Тютрин А.А., Немчинова Н.В., Володькина А.А. Изучение влияния параметров процесса электролиза на основные технико-экономические показатели работы ванн ОА-300М // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 4. С. 906–918. https://doi.org/10.21285/1814-3520-2020-4-906-918
- Brown C.W. The wettability of TiB2-based cathodes in low-temperature slurry-electrolyte reduction cells // JOM. 1998. Vol. 50. Iss. 5. P. 38–40.
- Bradford D.R. Inert Anode Metal Life in Low Temperature Reduction Process. Final Technical Report for September 17, 1998 through March 31, 2005. 101 p / National Technical Reports Library. URL: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDe tail/DE2006841153.xhtml (09.08.2020).
- Wang Jia-wei, Lai Yan-qing, Tian Zhong-liang, Liu Yexiang. Effect of electrolysis superheat degree on anticorrosion performance of 5Cu / (10NiO - NiFe2О4) cermet inert anode // Journal of Central South University of Technology. 2007. P. 768. http://doi.org/10.1007/s11771-007-0146-5
- Zaikov Yu., Khramov A., Kovrov V., Kryukovsky V., Apisarov A., Chemesov O., et al. Electrolysis of aluminum in the low melting electrolytes based on potassium cryolite // Light metals. 2008. P. 505.
- Hryn J.N., Tkacheva O.Y., Spangenberger J.S. UltraHigh-efficiency aluminum production cell // Report of Energy Systems Division, Argonne National Laboratory. Award Number: DE-AC02-06CH11357. April 2014. P. 86.. URL: https://www.energy.gov/eere/amo/downloads/ultrahighefficiency-aluminum-production-cells (17.08.2020).
- Bao Shengzhong, Chai Dengpeng, Shi Zhirong, Wang Junwei, Liang Guisheng, Zhang Guisheng. Effects of Current Density on Current Efficiency in Low Temperature Electrolysis with Vertical Electrode Structure // Light Metals. 2018. P. 611–619. http://dx.doi.org/10.1007/978-3319-72284-9_79
- Padamata S.K., Yasinskiy A.S., Polyakov P.V. Progress of inert anodes in aluminium industry: review // Journal of Siberian Federal University. Chemistry. 2018. Vol. 11. No. 1. P. 18–30. https://doi.org/10.17516/19982836-0055
- Самсонов Г.В., Серебрякова Т.И., Неронов В.А. Бориды. М.: Изд-во «Атомиздат», 1975. 376 с.
- Барабошкин Н.А. Электрокристаллизация металлов из расплавленных электролитов. М.: Наука, 1976. 279 с.
- Горланов Е.С. К вопросу о применении твердых электродов для электролиза криолитоглиноземных расплавов. Часть 1. // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 6. С. 1324–1336. https://doi.org/10.21285/1814-3520-2020-6-1324-1336
- Горланов Е.С. Особенности применения твердых электродов для электролиза криолитоглиноземных расплавов // Вестник Иркутского государственного технического университета. 2019. Т. 23. № 2. С. 356–366. http://doi.org/10.21285/1814-3520-2019-2-356-366
Supplementary files


