Estimation of power consumption when trapping finely-dispersed particles in a separator with coaxially-arranged pipes

Cover Page

Cite item

Full Text

Abstract

This article sets out to estimate power consumption when trapping finely-dispersed particles of silicon dioxide using a separator with coaxially-arranged pipes, as well as the efficiency of such an installation. To this end, a numerical simulation of the movement of a gas flow with finely-dispersed particles of silicon dioxide through a separator with coaxial pipes was carried out in the ANSYS Fluent software. During the experiments, the inlet gas flow rate varied from 5 to 10 m/s, while the width and height of the rectangular slit ranged 2.1-8.7 and 10-30 mm, respectively. It was shown that the maximum efficiency of collecting finely-dispersed silicon dioxide particles and the minimum power consumption required for pumping the gas flow through the installation largely depends on the formation of a stable vortex structure in the interpipe space. The research showed that the optimal inlet gas flow rate equals 7.5 m/s. At this rate, the efficiency of particle collection corresponds to higher rates with a devia tion of ± 6%. In this case, the pressure loss is 1.74 times lower than that at higher rates. In order to achieve an efficiency of at least 90% with the height of the rectangular slit from 10 to 30 mm, the Stokes numbers must correspond to values of more than 50. The power consumption required for pumping a gas containing silicon dioxide particles through a separator equipped with coaxial pipes comprises from 1.9 to 31.2 W at the inlet gas flow rate of 7.5 m/s. In this case, the parameters of the rectangular slit are as follows: width - from 2.1 to 8.7 mm, height - from 10 to 30 mm. The use of separators with coaxially-arranged pipes in technological lines based on plasma technologies can become an alternative to installations for fine gas purification.

About the authors

V. E. Zinurov

Kazan State Power Engineering University

Email: vadd_93@mail.com

A. V. Dmitriev

Kazan State Power Engineering University

Email: ieremiada@gmail.com

G. R. Badretdinova

Kazan State Power Engineering University

Email: nice.badretdinova@mail.ru

R. Ya. Bikkulov

Kazan State Power Engineering University

Email: bikkulov@tnpc.ru

I. N. Madyshev

Kazan National Research Technological University

Email: ilnyr_91@mail.ru

References

  1. Космачев П.В., Власов В.А., Волокитин Г.Г. Наноразмерный SIO2, полученный плазменно-дуговым методом // Вестник Бурятского государственного университета. Химия. Физика. 2018. № 2-3. С. 15-19. https://doi.org/10.18101/2306-2363-2018-2-3-15-19
  2. Постнов В.Н., Мельникова Н.А., Свистунова О.С., Постнов Д.В., Мурин И.В. Нанокомпозиты на основе нафиона, содержащие модифицированный аэросил // Журнал общей химии. 2016. Т. 86. № 10. С. 17561758. https://doi.org/10.1134/S1070363216100273
  3. Ab Rahman I., Ghazali N.A.M., Bakar W.Z.W., Masudi S.A. Modification of glass ionomer cement by incorporating nanozirconia-hydroxyapatite-silica nano-powder composite by the one-pot technique for hardness and aesthetics improvement // Ceramics international. 2017. Vol. 43. Iss. 16. P. 13247-13253. https://doi.org/10.1016/j.ceramint.2017.07.022
  4. Cho Y.-S., Moon J.-W. Collection of industrial oil using nanoparticles and porous powders of silica // Archives of Metallurgy and Materials. 2017. Vol. 62. No. 2B. P. 13711375. https://doi.org/10.1515/amm-2017-0211
  5. Зинуров В.Э., Дмитриев А.В., Мубаракшина Р.Р. Повышение эффективности аспирационных систем при обработке крахмалистого сырья // Ползуновский вестник. 2020. № 2. С. 18-22. https://doi.org/10.25712/ASTU.2072-8921.2020.02.004
  6. Tofighian H., Amani E., Saffar-Avval M. A large eddy simulation study of cyclones: the effect of sub-models on efficiency and erosion prediction // Powder Technology. 2020. Vol. 360. P. 1237-1252. https://doi.org/10.1016/j.powtec.2019.10.091
  7. Зинуров В.Э., Дмитриев А.В., Соловьева О.В., Латыпов Д.Н. Влияние загрязнения пылеочистительного сепаратора мелкодисперсной пылью на энергетические затраты в ходе его эксплуатации // Вестник технологического университета. 2019. Т. 22. № 8. С. 33-37.
  8. Лаптев А.Г., Башаров М.М., Лаптева Е.А. Сепараци-онная и энергетическая эффективность насадочных аппаратов очистки газов от аэрозолей // Теоретические основы химической технологии. 2017. Т. 51. № 5. С. 491-498.
  9. Зинуров В.Э., Дмитриев А.В., Дмитриева О.С. Улавливание мелкодисперсных капель из газового потока в сепарационном устройстве с двутавровыми элементами // Промышленная энергетика. 2020. № 12. С. 4753. https://doi.org/10.34831/EP.2020.23.49.008
  10. Song Chengming, Pei Binbin, Jiang Mengting, Wang Bо, Xu Delong, Chen Yanxin. Numerical analysis of forces exerted on particles in cyclone separators // Powder Technology. 2016. Vol. 294. P. 437-448. https://doi.org/10.1016/j.powtec.2016.02.052
  11. Mazyan W.I., Ahmadi A., Ahmed H., Hoorfar M. Increasing efficiency of natural gas cyclones through addition of tangential chambers // Journal of Aerosol Science. 2017. Vol. 110. P. 36-42. https://doi.org/10.1016/j.jaerosci.2017.05.007
  12. Dmitriev A.V., Zinurov V.E., Dmitrieva O.S. Intensification of gas flow purification from finely dispersed particles by means of rectangular separator // Materials Science and Engineering: IOP Conference Series. 2018. Vol. 451. P. 012211. https://doi.org/10.1088/1757-899X/451/1/012211
  13. Gao Sihong, Zhang Dandan, Fan Yiping, Lu Chunxi. A novel gas-solids separator scheme of coupling cyclone with circulating granular bed filter (C-CGBF) // Journal of Hazardous Materials. 2019. Vol. 362. P. 403-411. https://doi.org/10.1016/j.jhazmat.2018.07.065
  14. Dmitriev A.V., Zinurov V.E., Dmitrieva O.S. Influence of elements thickness of separation devices on the finely dispersed particles collection efficiency // International Conference on Modern Trends in Manufacturing Technologies and Equipment: MATEC Web of Conferences. 2018. Vol. 224. P. 02073. https://doi.org/10.1051/matecconf/201822402073
  15. Sagot B., Forthomme A., Ait Ali Yahia L., De La Bourdonnaye G. Experimental study of cyclone performance for blow-by gas cleaning applications // Journal of Aerosol Science. 2017. Vol. 110. P. 53-69. https://doi.org/10.1016/j.jaerosci.2017.05.009
  16. Tsareva O.V., Balyberdin A.S., Vakhitov M.R., Kharkov V.V., Dubkova N.Z. Investigation of filter materials for gas cleaning from sulfuric acid // Earth and Environmental Science: IOP Conference Series. 2020. Vol. 421. Iss. 7. P. 072014. https://doi.org/10.1088/1755-1315/421/7/072014
  17. Zhang Mingxing, Chen Haiyan, Yan Cuiping, Li Qi-anqian, Qiu Jie. Investigation to rectangular flat pleated filter for collecting corn straw particles during pulse cleaning // Advanced Powder Technology. 2018. Vol. 29. Iss. 8. P. 1787-1794. https://doi.org/10.1016/j.apt.2018.04.014
  18. Le Dang Khoi, Yoon Joon Yong. Numerical investigation on the performance and flow pattern of two novel innovative designs of four-inlet cyclone separator // Chemical Engineering and Processing - Process Intensification. 2020. Vol. 150. P. 107867. https://doi.org/10.1016/j.cep.2020.107867
  19. Parvaz F., Hosseini S.H., Elsayed K., Ahmadi G. Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators // Separation and Purification Technology. 2018. Vol. 201. P. 223-237. https://doi.org/10.1016/j.seppur.2018.03.001
  20. Venkatesh S., Sakthivel M. Numerical investigation and optimization for performance analysis in Venturi inlet cyclone separator // Desalination and Water Treatment. 2017. Vol. 90. P. 168-179. https://doi.org/10.5004/dwt.2017.21444

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).