A study of the dependence between fuel consumption of a heat gas turbine and variation of heat loading of regional consumers having various climatic conditions taking into account determination of structural characteristics of heat exchanging equipment for grid water heating

Cover Page

Cite item

Full Text

Abstract

The aim was to optimize the dependence between fuel consumption and heat loading of regional consumers varied due to climatic conditions, taking into account the determination of structural characteristics of heat exchanging equipment for grid water heating in a heat gas turbine. A heat gas turbine comprising two fuel combustion chambers, a waste-heat boiler and a contact heat exchanger to heat makeup grid water was investigated. Scheme and parametric optimization studies were carried out using a mathematic model of a gas turbine created using a software and hardware system developed at the Department of Heat Power Systems of the Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences. Th turbine operating conditions differing in heat loads in four suggested operating regions were studied. It was found that an increase in fuel consumption in the second combustion chamber was 29%– 84% compared to that in the first combustion chamber. This rise was recorded when the turbine heat loading was increasing in the considered regions. Data analysis of the scheme and parametric optimization studies showed that, for operating conditions with a higher heat loading, it seems reasonable to ensure the maximum possible heating of makeup grid water as the loading rises. It is also recommended to slightly increase the heat surface area of the makeup grid water heater whose structural materials are less expensive than in a waste-heat boiler. It was shown that the suggested technical solution slightly increases specific capital investments while fully providing electrical and heat power to consumers. The obtained results can be used to select optimal technical solutions ensuring competitiveness in the operation of a heat gas turbine in regions with various climatic characteristics.

About the authors

E. L. Stepanova

Melentiev Energy Systems Institute SB RAS

Email: elstep47@mail.ru

P. V. Zharkov

Melentiev Energy Systems Institute SB RAS

Email: pzharkov@isem.irk.ru

References

  1. Boyce M.P. An overview of gas turbines // Gas Turbine Engineering Handbook (Fourth Edition). 2012. P. 3–88. https://doi.org/10.1016/B978-0-12-383842-1.00001-9
  2. Al-attab K.А., Zainal Z.А. Externally fired gas turbine technology: a review // Applied Energy. 2015. Vol. 138. P. 474–487. https://doi.org/10.1016/j.apenergy.2014.10.049
  3. Yang Xiaochen, Li Hongwei, Svendsen Svend. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating // Energy. 2016. Vol. 109. P. 248–259. https://doi.org/10.1016/j.energy.2016.04.109
  4. Liu Xuezhi, Wu Jianzhong, Jenkins N., Bagdanavicius A. Combined analysis of electricity and heat networks // Applied Energy. 2016. Vol. 162. P. 1238–1250. https://doi.org/10.1016/j.apenergy.2015.01.102
  5. Leitner B., Widl E., Gawlik W., Hofmann R. A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids // Energy. 2019. Vol. 182. P. 729–738. https://doi.org/10.1016/j.energy.2019.06.016
  6. Wang Ligang, Voll P., Lampe M., Yang Yongping, Bardow A. Superstructure-free synthesis and optimization of thermal power plants // Energy. 2015. Vol. 91. P. 700–711. https://doi.org/10.1016/j.energy.2015.08.068
  7. Kowalczyk Ł., Elsner W., Niegodajew P., Marek M. Gradient-free methods applied to optimization of advanced ultra-supercritical power plant // Applied Thermal Engineering. 2016. Vol. 96. P. 200–208. https://doi.org/10.1016/j.applthermaleng.2015.11.091
  8. Plis M., Rusinowski H. Predictive, adaptive model of PG 9171E gas turbine unit including control algorithms // Energy. 2017. Vol. 126. P. 247–255. https://doi.org/10.1016/j.energy.2017.03.027
  9. Mehrgoo M., Amidpour M. Constructal design and optimization of a dual pressure heat recovery steam generator // Energy. 2017. Vol. 124. P. 87–99. https://doi.org/10.1016/j.energy.2017.02.046
  10. Клер А.М., Тюрина Э.А. Оптимизационные исследования энергетических установок и комплексов. Новосибирск: Академическое изд-во «Гео», 2016. 298 с.
  11. Kler A.M., Zharkov P.V., Epishkin N.O. Parametric optimization of supercritical power plants using gradient methods // Energy. 2019. Vol. 189. P. 116230. https://doi.org/10.1016/j.energy.2019.116230
  12. Шадек Е., Маршак Б., Анохин А., Горшков В. Глубокая утилизация тепла отходящих газов теплогенераторов // Промышленные и отопительные котельные и мини-ТЭЦ. 2014. № 2. С. 21–25.
  13. Аронов И.З., Пресич Г.А. Опыт эксплуатации контактных экономайзеров на Первоуральской ТЭЦ // Промышленная энергетика. 1991. № 8. С. 17–20.
  14. Terhan M., Comakli K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas // Applied Thermal Engineering. 2016. Vol. 100. P. 1007–1015. https://doi.org/10.1016/j.applthermaleng.2015.12.122
  15. Shang Sheng, Li Xianting, Chen Wei, Wang Baolong, Shi Wenxing. A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger // Applied Energy. 2017. Vol. 207. P. 613–623. https://doi.org/10.1016/j.apenergy.2017.05.169
  16. Степанова Е.Л., Жарков П.В. Исследование эффективности дожигания топлива в дополнительной камере сгорания ГТУ, имеющей контактный теплообменник для подогрева подпиточной сетевой воды // Известия Российской академии наук. Энергетика. 2020. № 2. С. 133–140. https://doi.org/10.31857/S0002331020020120
  17. Демченко К.В. Основные принципы организации оптового рынка электроэнергии и мощности Российской Федерации // Главный энергетик. 2019. № 12. С. 23–27.
  18. Пеньковский А.В., Стенников В.А. Математическое моделирование рынка тепловой энергии в формате единой теплоснабжающей организации // Теплоэнергетика. 2018. № 7. С. 42–53. https://doi.org/10.1134/S004036361807007X
  19. Kler A.M., Stepanova E.L., Maksimov A.S. Investigating the efficiency of a steam-turbine heating plant with a back-pressure steam turbine and waste-heat recovery // Thermophysics and Aeromechanics. 2018. Vol. 25. No. 6. Р. 929–938. https://doi.org/10.1134/S0869864318060136
  20. Клер А.М., Максимов А.С., Степанова Е.Л., Жарков П.В., Тарариев Р.А., Перевалов Е.Г.. Оптимизация режимов работы ТЭЦ с учетом реального состояния основного оборудования // Теплоэнергетика. 2009. № 6. С. 53–57.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).