Stress-strain numerical simulation for a microprofile subjected to orthogonal impact under constrained loading conditions
- Authors: Vulykh N.V.1, Vulykh A.N.2
-
Affiliations:
- Irkutsk National Research Technical University
- Irkutsk State Agrarian University named after A. A. Ezhevsky
- Issue: Vol 25, No 5 (2021)
- Pages: 538-548
- Section: Mechanical Engineering and Machine Science
- URL: https://medbiosci.ru/2782-4004/article/view/382287
- DOI: https://doi.org/10.21285/1814-3520-2021-5-538-548
- ID: 382287
Cite item
Full Text
Abstract
The present paper aims to describe shape changes in a microroughness model developed for the working surfaces of parts at degrees of deformation commensurate with the height of the original microprofile; to establish how the degree of microprofile upsetting affects its shape under constrained loading conditions; as well as to estimate the stress state of the microprofile by stress intensity. A numerical model describing the surface microprofile of parts was calculated using the ANSYS Workbench environment. Lead, tin, aluminum, and copper were used as microprofile materials. In addition, microprofile upsetting was computer simulated under constrained loading conditions. The valley bottom was found to rise at a 10–20% microprofile upsetting by 0.213–0.275 mm relative to the original profile height, depending on its material. The relative length of the smoothed microprofile section amounted to 0.786–0.925 mm of its original length. The base angle of the deformed microprofile reached 570 and 800 for copper and lead models, respectively. The depth of valleys ranged from 1.4 mm (23% of the original profile height) for lead models and from 1.8 mm (30% of the original profile height) for copper models. In the case of maximum microprofile upsetting, an increase in the yield strength of microrough material from 10 to 60 MPa contributed to a reduction in the base angle of the deformed microprofile, as well as relative length and the vertical rise of microprofile valleys at their highest point. No interlocking of lateral microprofile surfaces was observed. At a 50% upsetting, the stress state of the microprofile exceeded its ultimate strength by 4–8 times. The shape changes simulated for the microprofile from plastic metallic materials are described. The performed numerical simulation correlates well with the experimental results obtained for lead microprofile models. It is worth noting that the complete smoothing of the microprofile is likely to occur through the rise of valleys and the approaching of its lateral surfaces. The study results can be used for designing and manufacturing valve gate assemblies.
About the authors
N. V. Vulykh
Irkutsk National Research Technical University
Email: vulix2011@yandex.ru
ORCID iD: 0000-0002-2607-4302
A. N. Vulykh
Irkutsk State Agrarian University named after A. A. Ezhevsky
Email: alexxx43zet@mail.ru
References
- Проскуряков Ю. Г. технология упрочняющекалибрующей обработки металлов. М.: Машиностроение, 1971. 207 с.
- El-Tahawy M., Pereira P. H. R., Huang Yi, Park H., Choe Heeman, Langdon T. G., et al. Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing // Materials Letters. 2018. Vol. 214. P. 240–242. https://doi.org/10.1016/j.matlet.2017.12.040.
- Никитин Г. С., Галкин М. П., Жихарев П. Ю. Влияние внеконтактных зон на усилия деформирования в процессах обработки металлов давлением // Металлург. 2012. № 10. С. 61–65. https://www.elibrary.ru/item.asp?id=18528138.
- Демкин Н. Б. Контактирование шероховатых поверхностей. М.: Изд-во «Наука», 1970. 227 с.
- Шнейдер Ю. Г. Образование регулярных микрорельефов на деталях и их эксплуатационные свойства. Л.: Изд-во «Машиностроение», 1972. 240 c.
- Вулых Н. В. Анализ напряженного состояния шероховатого слоя при локальном и осесимметричном пластическом деформировании // Вестник Иркутского государственного технического университета. 2017;21(11):17–26. https://doi.org/10.21285/1814-3520-2017-11-17-26.
- Нго Као Кыонг, Зайдес С.А., Лэ Хонг Куанг. Оценка качества упрочненного слоя при поверхностном пл астическом деформировании роликами разных ко нструкций // Вестник Иркутского государственного те хнического университета. 2018. Т. 22. № 1. С. 30–37. https://doi.org/10.21285/1814-3520-2018-1-30-37.
- Chen Xiaolin, Liu Yiijun. Finite element modeling and simulation with ANSYS Workbench: «CRC Press», 2014. 411 p.
- Огар П. М., Тарасов В. А., Межецкий В. И. Герм етичность затворов арматуры и сосудов высокого да вления // Проблемы механики современных машин: матер. V Междунар. конф. (г. Улан -Удэ, 25–30 июня 2012 г.). Улан -Удэ: Изд-во ВСГУТУ, 2012. С. 24–27. https://www.elibrary.ru/item.asp?id=26381319.
- Nikolaeva E. P., Mashukov A. N. Evaluation of residual stresses in high-pressure valve seat surfacing // Chemical and Petroleum Engineering. 2017. Vol. 53. Iss. 7-8. P. 459–463. https://doi.org/10.1007/s10556-017-0363-1.
- Serebrennikova A. G., Nikolaeva E. P, Savilov A. V., Timofeev S. A., Pyatykh A. S. Research results of stressstrain state of cutting tool when aviation materials turning // Journal of Physics: Conference Series. 2018. Vol. 944. No. 1. Р. 012104. https://doi.org/10.1088/1742-6596/944/1/012104.
- Gridin G. D. New in development of high-pressure angle shutoff valves // Chemical and Petroleum Engineering. 2012. Vol. 47. No. 9-10. Р. 683–686.
- Vulykh N. V., Vulykh A. N. Computer Simulation of Microprofile Strain Under Orthogonal Impact at Constrained Load. Part 1 // Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering / eds. A. A. Radionov, V. R. Gasiyarov. Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-54817-9_103.
- Vulykh N. V. Centrifugal Rolling of Flexible Shafts for Achieving Best Possible Roughness of the Surface // Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). Lecture Notes in Mechanical Engineering / eds. A. Radionov, O. Kravchenko, V. Guzeev, Y. Rozhdestvenskiy. Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-22063-1_115.
- Zaides S. A., Pham Van Anh. Improvement of calibrated steel quality by surface deformation. Part 1: Determination of the stress state of cylindrical parts during orbital surface deformation // Steel in Translation. 2020. Vol. 50. Р. 745–749. https://doi.org/10.3103/S0967091220110145.
- Zaides S. A., Le Hong Quang. State of stress in cylindrical parts during transverse straightening // Russian Metallurgy (Metally). 2019. Vol. 2019. No. 13. Р. 1487–1491. https://doi.org/10.1134/S003602951913041X.
- Кузьменко А. Г. Глобальный и локальный коэффициенты трения и объяснение их зависимости от давления // Проблемы трибологии. 2008. № 2. С. 69–88. https://www.elibrary.ru/item.asp?id=19119568.
- Вулых Н. В., Рыжиков И. Н., Пэй Цаоцао, Сайганов Т. М. Определение критического перемещения штампа при деформировании идеально жесткопластического микропрофиля при стесненных условиях нагружения // Жизненный цикл конструкционных материалов: матер. IX Всерос. науч. -техн. конф. с междунар. уч астием (г. Иркутск, 24–26 апреля 2019 г.). Иркутск: Изд во ИрНИТУ, 2019. С. 154–158.
- Vulykh N. V. Microprofile model form changing research at axisymmetric deformation with account of scale factor // Proceedings of the 4th International Conference on Industrial Engineering. ICIE 2018. Lecture Notes in Mechanical Engineering / eds. A. Radionov, O. Kravchenko, V. Guzeev, Y. Rozhdestvenskiy. Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-95630-5_121.
- Самуль В. И. Основы теории упругости и пласти чности. М.: Изд-во «Высшая школа», 1970. 288 с.
Supplementary files


