Study of a segmented ventilation system of the brake disc and determination of the aerodynamic and heat exchange characteristics of the airflow
- Authors: Polyakov P.A.1
-
Affiliations:
- Rostov State Transport University
- Issue: Vol 25, No 6 (2021)
- Pages: 720-732
- Section: Mechanical Engineering and Machine Science
- URL: https://medbiosci.ru/2782-4004/article/view/382301
- DOI: https://doi.org/10.21285/1814-3520-2021-6-720-732
- ID: 382301
Cite item
Full Text
Abstract
This study aims determine a relationship between the aerodynamic and heat exchange characteristics of the air flow in a segmented ventilation system of the brake disc with improved heat dissipation in the boundary layer of the air flow. Classical equations of heat and mass transfer in the boundary layer of the air flow cooling the brake disc ventilation chamber were used. The cooling performance of the system was assessed using the method of similarity. The obtained theoretical findings were confirmed by CFD-modelling. Mathematical models were developed for vented discs with both continuous grooves and slotted grooves. A criterion for assessing the performance of brake disc ventilation systems was proposed, consisting in turbulization of the air flow inside the device under study. According to the obtained analytical dependencies, a 20-fold acceleration of the air flow decreases the turbulization parameter by 1.24 times. An increase in the temperature difference in the boundary layer by 8 times leads to an increase in the turbulization parame-ter by 86.2 times. Using the criterion proposed for assessing the work performance, the aerodynamic and heat exchange characteristics of the system under study were calculated. As a result, a relationship between the design parameters of the segmented ventilation system and improved heat dissipation in the boundary layer of the cooling air flow is proposed. The conducted CFD modelling confirmed the aerodynamic characteristics of the system under study obtained theoretical-ly. This mathematical model together with the turbulization parameter can be used when both developing modern vented brake discs and assessing the existing cooling systems of friction units in order to minimize the possibility of reduced heat exchange processes.
About the authors
P. A. Polyakov
Rostov State Transport University
Email: polyakov.pavel88@mail.ru
ORCID iD: 0000-0003-0576-5398
References
- Bhure S. Analysis of ventilated disc brake rotor using CFD to improve its thermal performance // 6th International set Conference Vellore (Tamil Nadu, Vellore, January 2013 – May 2013). Vellore: School of mechanical building and science, VIT University, 2013.
- Pan Like, Han J., Li Z., Yang Z., Li W. Numerical simulation for train brake disc ventilation // Journal of Beijing Jiaotong University. 2015. Vol. 39. Iss. 1. P. 118–124. https://doi.org/10.11860/j.issn.1673-0291-2015.01.020.
- Atkins M. D., Kienhöfer F. W., Kim Tongbeum. Flow behavior in radial vane brake rotors at low rotational speeds // Journal of Fluids Engineering. 2019. Vol. 141. Iss. 8. Р. 081105. https://doi.org/10.1115/1.4042470.
- Indira R., Bharatish A. Optimization of ventilated brake disc rotor geometry for enhanced structural characteristics // Journal of Measurements in Engineering. 2020. Vol. 8. Iss. 3. P. 98–106. https://doi.org/10.21595/jme.2020.21399.
- Nejat A., Aslani M., Mirzakhalili E., Najian Asl R. Heat transfer enhancement in ventilated brake disk using double airfoil vanes // Journal of Thermal Science and Engineering Applications. 2011. Vol. 3. Iss. 4. Р. 045001. https://doi.org/10.1115/1.4004931.
- Рудов П. К. Методика расчета эффективного радиуса трения в дисковом тормозе с накладками трапецеидальной формы // Вестник белорусского государственного университета транспорта: Наука и транспорт. 2006. № 1-2. С. 15–21.
- Panelli M., Cardone G. Thermal fluid dynamics analysis of vented brake disc rotor with ribs turbulators // Thermal and Environmental Issues in Energy Systems, ASME-UITATI: Proceedings International Conference. Sorrento, 2010. https://doi.org/10.13140/2.1.3525.7122.
- Nosko O. Partition of friction heat between sliding semispaces due to adhesion-deformational heat generation // International Journal of Heat and Mass Transfer. 2013. Vol. 64. P. 1189–1195. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.056.
- Nosko O. Analytical study of sliding instability due to velocity- and temperature-dependent friction // Tribology Letters. 2016. Vol. 61. No. 1. https://doi.org/10.1007/s11249-015-0628-9.
- Mortazavi V., Wang Chuanfeng, Nosonovsky M. Stability of frictional sliding with the coefficient of friction depended on the temperature // Journal of Tribology. 2012. Vol. 134. Iss. 4. Р. 041601. https://doi.org/10.1115/1.4006577.
- Úradníček J., Musil M., Bachratý M., Havelka F. Destabilization of disc brake mechanical system due to nonproportional damping // Engineering mechanics: Proceedings 26th International Conference (Brno, 24–25 November, 2020). Brno: Brno University of Technology Institute of Solid Mechanics, Mechatronics and Biomechanics, 2020. P. 496–499. https://doi.org/10.21495/5896-3-496.
- Du Xuzhi, Yang Zhigang, Li Qiliang, Zhao Lanping. Brake disc cooling characteristics of a passenger car // Journal of Tongji University. 2016. https://doi.org/10.11908/j.issn.0253-374x.2016.05.020.
- Mamtaz F., Hossain A., Sharmin N. Solution of boundary layer and thermal boundary layer equation // Asian Research Journal of Mathematics. 2018. Vol. 11. Iss. 4. Р. 1–15
- https://doi.org/10.9734/ARJOM/2018/45267.
- Vasu B., Prasad V. R., Bég O. А. Thermo-diffusion and diffusion-thermo effects on boundary layer flows // Chemical Engineering Journal. 2011. Vol. 173. P. 598–606.
- Bhattacharyya K., Layek G. Slip effect on diffusion of chemically reactive species in boundary layer flow over a vertical stretching sheet with suction or blowing // Chemical Engineering Communications. 2011. Vol. 198. Iss. 11. P. 1354–1365. https://doi.org/10.1080/00986445.2011.560515.
- Pringle J. Instabilities in the bottom boundary layer reduce boundary layer arrest, allowing cross-isobath spread of downwave flows and ventilating the boundary layer // Earth and Space Science Open Archive. 2021. https://doi.org/10.1002/essoar.10506113.1.
- Kaushik M. Boundary layers // Theoretical and Experimental Aerodynamics. Singapore: Springer, 2019. Р. 251–284. https://doi.org/10.1007/978-981-13-1678-4_11.
- Поляков П. А. Связь между режимом протекания воздушного потока и теплоотдачей от поверхностей вентиляционного аппарата тормозного диска // Известия Тульского государственного университета. Технические науки. 2021. № 8. С. 184–190. https://doi.org/10.24412/2071-6168-2021-8-184-190.
- Jiang Feng, Xu Weilin, Deng Jun, Wei Wangru. Flow structures of the air-water layer in the free surface region of high-speed open channel flows // Mathematical Problems in Engineering. 2020. Vol. 2020. https://doi.org/10.1155/2020/5903763.
- Tarafder Md. Sh., Naz N. Analysis of potential flow around two-dimensional body by finite element method // Journal of Mechanical Engineering Research. 2015. Vol. 7. Iss. 2. P. 9–22. https://doi.org/10.5897/JMER2014.0342.
Supplementary files


