Thermodynamic modelling of roasting of molybdenum sulphide concentrate with calcium hydroxide

Cover Page

Cite item

Full Text

Abstract

This work aims to determine the conditions for the CaMoO4, CaSO4, Ca(ReO4)2 formation during oxidation of MoS2 and ReS2 in the presence of Ca(ОН)2. The concentrate from the Yuzhno-Shameyskoye deposit in the Sverdlovsk region, having 37% wt. Мо and 0.005% wt. Re, was selected as a feedstock for thermodynamic modelling of sweet roasting in the presence of Ca(OH)2. To determine the optimal amount of calcium-containing additives, the thermodynamic modelling was carried out using the following mass ratios: molybdenum concentrate: Ca(OH)2 = 1:0.8, 1:1, 1:1.2 and 1:1.5 in the temperature range of 100–800°С, with a step of 100°С, system pressure of 0.1 MPa in the air (molar ratio: molybdenum concentrate + Ca(OH)2: air = 1:5). The content of all sample components in moles was entered into the HSC 6.1 software package. The main reactions associated with the sweet roasting of molybdenum concentrate in the presence of calcium hydroxide were shown. It was established that the main phases formed as a result of roasting comprise CaSO4, CaSO3, MoO3, CaMoO4, CaMoO3 and CaReO4. The effect of temperature on the formation of the main gaseous products was studied under different mass ratios of molybdenum concentrate and Ca(OH)2. It was found that up to 600°C, with molybdenum concentrate to Ca(OH)2 ratio of 1:1, the concentrations of released sulphurous anhydride are lower than the maximum permissible concentrations. The calculated thermodynamic data was used for modelling the roasting process of molybdenum concentrate with calcium hydroxide. An optimal ratio necessary for the successful process operation was established: molybdenum concentrate: Ca(OH)2 = 1:1 by weight. Thermodynamic modelling showed that, in the temperature range of 100–600°С when using Ca(OH)2, no rhenium and molybdenum loss is observed, the release of sulfur is less than 10 mg/m3.

About the authors

D. S. Aleshin

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: dmitriy.aleshin1@yandex.ru
ORCID iD: 0000-0002-2404-5452

A. G. Krasheninin

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: agkrash@mail.ru
ORCID iD: 0000-0002-7321-1509

P. V. Zaitseva

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: zaitcevapolina@gmail.com
ORCID iD: 0000-0002-8401-7867

I. N. Tanutrov

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: intan38@live.ru
ORCID iD: 0000-0001-8610-8749

References

  1. Зеликман А. Н. Молибден. М.: Изд-во «Металлургия», 1970. 441 с.
  2. Shi Lihua, Wang Xue-Wen, Wang Ming-Yu, Peng Jun, Xiao Caixia. Extraction of molybdenum from high-impurity ferromolybdenum by roasting with Na2CO3 and CaO and leaching with water // Hydrometallurgy. 2011. Vol. 108. Iss. 3-4. P. 214–219. https://doi.org/10.1016/j.hydromet.2011.04.009.
  3. Lianyong Wang, Wenqiang Sun, Jingfan Zhang, Jiuju Cai. A novel self-heated roasting technology for molybdenum concentrate // Rare Metal Materials and Engineering. 2015. Vol. 44. Iss. 11. P. 2618–2622. https://doi.org/10.1016/S1875-5372(16)60005-X.
  4. Fan Xiao-hui, Deng Qiong, Gan Min, Chen Xu-ling. Roasting oxidation behaviors of ReS2 and MoS2 in powdery rhenium-bearing, low-grade molybdenum concentrate // Transactions of Nonferrous Metals Society of China. 2019. Vol. 29. Iss. 4. P. 840–848. https://doi.org/10.1016/S1003-6326(19)64994-0.
  5. Wang Xue-Wen, Peng Jun, Wang Ming-Yu, Ye PuHong, Xiao Yuan. The role of CaO in the extraction of Ni and Mo from carbonaceous shale by calcification roasting, sulphation roasting and water leaching // International Journal of Mineral Processing. 2011. Vol. 100. Iss. 3-4. P. 130–135. https://doi.org/10.1016/j.minpro.2011.05.012.
  6. Wang Lu, Zhang Guo-hua, Dang Jie, Chou Kuo-chih. Oxidation roasting of molybdenite concentrate // Transactions of Nonferrous Metals Society of China. 2015. Vol. 25. Iss. 12. P. 4167–4174. https://doi.org/10.1016/S1003-6326(15)64067-5.
  7. Zhou Qiu-sheng, Yun Wei-tao, Xi Jun-tao, Li Xiao-bin, Qi Tian-gui, Liu Gui-hua. Molybdenite−limestone oxidizing roasting followed by calcine leaching with ammonium carbonate solution // Transactions of Nonferrous Metals Society of China. 2017. Vol. 27. Iss. 7. P. 1618–1626. https://doi.org/10.1016/S1003-6326(17)60184-5.
  8. Sun Hu, Li Guanghui, Yu Junjie, Luo Jun, Rao Mingjun, Peng Zhiwei, et al. A novel simultaneous oxidizingvolatilizing process for efficient separation of pure MoO3 from structure self-sustained molybdenite concentrate pellets // Powder Technology. 2019. Vol. 345. P. 338–345. https://doi.org/10.1016/j.powtec.2019.01.021.
  9. Fu Yun-feng, Xiao Qing-gui, Gao Yi-ying, Ning Pengge, Xu Hong-bin, Zhang Yi. Pressure aqueous oxidation of molybdenite concentrate with oxygen // Hydrometallurgy. 2017. Vol. 174. P. 131–139. https://doi.org/10.1016/j.hydromet.2017.10.001.
  10. Fan Xiao-hui, Deng Qiong, Gan Min, Chen Xu-ling. Roasting oxidation behaviors of ReS2 and MoS2 in powdery rhenium-bearing, low-grade molybdenum concentrate // Transactions of Nonferrous Metals Society of China. 2019. Vol. 29. Iss. 4. P. 840–848. https://doi.org/10.1016/S1003-6326(19)64994-0.
  11. Li Xiao-bin, Wu Tao, Zhou Qiu-sheng, Qi Tian-gui, Peng Zhi-hong, Liu Gui-hua. Kinetics of oxidation roasting of molybdenite with different particle sizes // Transactions of Nonferrous Metals Society of China. 2021. Vol. 31. Iss. 3. P. 842–852. https://doi.org/10.1016/S1003-6326(21)65543-7.
  12. Zhou Qiu-sheng, Yun Wei-tao, Xi Jun-tao, Li Xiao-bin, Qi Tian-gui, Liu Gui-hua, et al. Molybdenite−limestone oxidizing roasting followed by calcine leaching with ammonium carbonate solution // Transactions of Nonferrous Metals Society of China. 2017. Vol. 27. Iss. 7. Р. 1618−1626. https://doi.org/10.1016/S1003-6326(17)60184-5.
  13. Fan Xiao-hui, Deng Qiong, Gan Min, Chen Xu-ling. Roasting oxidation behaviors of ReS2 and MoS2 in powdery rhenium-bearing, low-grade molybdenum concentrate // Transactions of Nonferrous Metals Society of China. 2019. Vol. 29. Iss. 4. Р. 840−848. https://doi.org/10.1016/S1003-6326(19)64994-0.
  14. Li Xiao-bin, Wu Tao, Zhou Qiu-sheng, Qi Tian-gui, Peng Zhi-hong, Liu Gui-hua. Kinetics of oxidation roasting of molybdenite with different particle sizes // Transactions of Nonferrous Metals Society of China. 2021. Vol. 31. Iss. 3. Р. 842−852. https://doi.org/10.1016/S1003-6326(21)65543-7.
  15. Харин Е. И., Халезов Б. Д., Зеленин Е. А. Разработка экологически чистой комплексной технологии переработки молибденового концентрата Южно-Шамейского месторождения // Известия высших учебных заведений. Горный журнал. 2015. № 5. С. 129–134.
  16. Ватолин Н. А., Халезов Б. Д., Харин Е. И., Зеленин Е. А. Поиск экологически чистой технологии переработки молибденовых концентратов // Химическая технология. 2012. Т. 13. № 4. С. 229–232.
  17. Киреев В. А. Методы практических расчетов в термодинамике химических реакций. М.: Изд-во «Химия», 1975. 536 с.
  18. Ватолин Н. А., Моисеев Г. К., Трусов Б. Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.: Изд-во «Металлургия», 1994. 234 с.
  19. Gan Min, Fan Xiao-hui, Chen Xu-ling, Wu Cheng-qian, Ji Zhi-yun, Wang Song-rong, et al. Reaction mechanisms of low-grade molybdenum concentrate during calcification roasting process // Transactions of Nonferrous Metals Society of China. 2016. Vol. 26. Iss. 11. P. 3015−3023. https://doi.org/10.1016/S1003-6326(16)64432-1.
  20. Мельчакова О. В., Зайцева П. В., Майорова А. В., Куликова Т. В., Печищева Н. В., Шуняев К. Ю. Расчет термодинамических свойств перренатов металлов и их использование при моделировании подготовки проб к химическому анализу // Аналитика и контроль. 2019. Т. 23. № 4. С. 570–579. https://doi.org/10.15826/analitika.2019.23.4.015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).