Hydrometallurgical technologies of processing arsenic raw materials

Cover Page

Cite item

Full Text

Abstract

Methods presented in Russian and foreign scientific literature sources for processing high-arsenic copper raw materials to convert arsenic into low-soluble and stable compounds are reviewed. Hydrometallurgical processing methods are shown to be applicable for converting environmentally hazardous components into inert solid wastes while avoiding the formation of gaseous emissions. The isolation of arsenic when processing raw materials involves its oxidation and precipitation in the form of low-soluble and stable compounds. Methods for arsenic oxidation using oxygen, hydrogen peroxide, ozone, mixture of oxygen and sulphur dioxide, sodium hypochlorite are compared. Methods of oxidation by iron and permanganate ions, bacteria (biooxidation), as well as by introducing an activated carbon catalyst, are also considered. Precipitation approaches include neutralization by lime, precipitation of sulphides, co-precipitation of arsenic with iron ions, precipitation of scorodite, and encapsulation technology. As a result of the performed analysis, the authors present a promising approach for solving the problem of processing high-arsenic copper concentrates to comply with standards governing arsenic emissions into the environment, including the comprehensive processing of these raw materials using autoclave oxidation. In addition to the ensuring effective precipitation of arsenic in the form of a low-toxic compound (scorodite), this method can be used to isolate valuable components (copper, gold, silver) with their subsequent extraction into individual finished products. The obtained results establish a direction for a further in-depth study of the problem.

About the authors

R. E. Vasiliev

Saint Petersburg Mining University

Email: vasilroman2308@ya.ru

A. Ya. Boduen

Saint Petersburg Mining University

Email: Boduen_aya@pers.spmi.ru
ORCID iD: 0000-0003-3580-4394

A. A. Vasilieva

Saint Petersburg Mining University

Email: fml0914@mail.ru

References

  1. Зайцев П. В., Кравченко Н. А. Гидрометаллургическое извлечение меди и серебра из концентратов флотации смешанной руды // Цветные металлы. 2020. № 9. P. 84–91. https://doi.org/10.17580/tsm.2020.09.07.
  2. Mikula K., Izydorczyk G., Skrzypczak D., Moustakas K., Witek-Krowiak A., Chojnacka K. Value-added strategies for the sustainable handling, disposal, or value-added use of copper smelter and refinery wastes // Journal of Hazardous Materials. 2021. Т. 403. Р. 123602. https://doi.org/10.1016/j.jhazmat.2020.123602.
  3. Селиванов Е. Н., Новиков Д. О., Беляков В. В., Скопов Г. В. Распределение мышьяка по продуктам пирометаллургической переработки медно-цинкового концентрата // Цветные металлы. 2020. Vol. 1. P. 14–18. https://doi.org/10.17580/tsm.2020.01.02.
  4. Бодуэн А. Я., Петров Г. В., Кобылянский А. А., Булаев А. Г. Сульфидное выщелачивание медного концентрата с высоким содержанием мышьяка // Обогащение руд. 2022. № 1. С. 14–19. https://doi.org/10.17580/or.2022.01.03.
  5. Strauss J. A., Bazhko V., Ventruti G., Liguo X., Gomez M. A. Arsenic behavior during the treatment of refractory gold ores via POX: characterization of Fe-AsO4-SO4 precipitates // Hydrometallurgy. 2021. Vol. 203. P. 105616. https://doi.org/10.1016/j.hydromet.2021.105616.
  6. Bissen M., Frimmel F. H. Arsenic – a Review. Part II: Oxidation of arsenic and its removal in water treatment // Acta hydrochimica et hydrobiologica. 2003. Vol. 31. Iss. 2. P. 97–107. https://doi.org/10.1002/aheh.200300485.
  7. Ritcey G. M. Tailings management in gold plants // Hydrometallurgy. 2005. Vol. 78. Iss. 1-2. P. 3–20. https://doi.org/10.1016/j.hydromet.2005.01.001.
  8. Jia Yongfeng, Demopoulos G. P. Coprecipitation of arsenate with iron (III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention // Water Research. 2008. Vol. 42. Iss. 3. P. 661–668. https://doi.org/10.1016/j.watres.2007.08.017.
  9. Prucek R., Tuček J., Kolařík J., Filip J., Marušák Z., Sharma V. K., Zbořil R. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron (III) oxide nanoparticles // Environmental Science & Technology. 2013. Vol. 47. Iss. 7. P. 3283–3292. https://doi.org/10.1021/es3042719.
  10. Hao Linlin, Liu Mengzhu, Wang Nannan, Li Guiju. A critical review on arsenic removal from water using iron-based adsorbents // The Royal Society of Chemistry. 2018. Vol. 3. Iss. 69. P. 39545–39560. https://doi.org/10.1039/C8RA08512A.
  11. Khuntia S., Majumder S. K., Ghosh P. Oxidation of As(III) to As(V) using ozone microbubbles // Chemosphere. 2014. Vol. 97. P. 120–124. https://doi.org/10.1016/j.chemosphere.2013.10.046.
  12. Dodd M. C., Vu Ngoc Duy, Ammann A., Le Van Chieu, Kissner R., Pham Hung Viet, et al. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment // Environmental Science & Technology. 2006. Vol. 40. Iss. 10. P. 3285–3292. https://doi.org/10.1021/es0524999.
  13. Zhang W., Singh P., Muir D. M. SO2/O2 as an oxidant in hydrometallurgy // Minerals Engineering. 2000. Vol. 13. Iss. 13. P. 1319–1328. https://doi.org/10.1016/S0892-6875(00)00115-1.
  14. Lee Giehyeon, Song Kyungsun, Bae Jongseong. Permanganate oxidation of arsenic(III): reaction stoichiometry and the characterization of solid product // Geochimica et Cosmochimica Acta. 2011. Vol. 75. Iss. 17. P. 4713–4727. https://doi.org/10.1016/j.gca.2011.02.043.
  15. Lafferty B. J., Ginder-Vogel M., Sparks D. L. Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments // Environmental Science & Technology. 2010. Vol. 44. Iss. 22. P. 8460–8466. https://doi.org/10.1021/es102013p.
  16. Sorlini S., Gialdini F. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine // Water Research. 2010. Vol. 44. Iss. 19. P. 5653–5659. https://doi.org/10.1016/j.watres.2010.06.032.
  17. Patente no. 10077487, United States of America. Method for arsenic oxidation and removal from process and waste solutions / Yeonuk Choi, A. G. Gharelar, N. Ahern. Depose 28.05.2014; publ. 04.12.2014.
  18. Адамов Э. В., Панин В. В. Биотехнология металлов: реальность и перспективы // Записки Горного института. 2005. Т. 165. С. 10–11.
  19. Marsden J. O. Overview of gold processing techniques around the world // Mining, Metallurgy & Exploration. 2006. Vol. 23. Iss. 3. P. 121–125. https://doi.org/10.1007/BF03403198.
  20. Теляков Н. М., Дарьин А. А., Луганов В. А. Перспективы применения биотехнологий в металлургии и обогащении // Записки Горного института. 2016. Т. 217. С. 113–124.
  21. Bulaev A., Elkina Y., Melamud V. Copper and zinc bioleaching from arsenic-containing polymetallic concentrate // 19th International Multidisciplinary Scientific GeoConference SGEM 2019 (Sofia, 9–11 December 2019). Sofia, 2019. Vol. 19. Iss. 6.3. Р. 83–88. https://doi.org/10.5593/sgem2019V/6.3/S08.011.
  22. Nan Xin-yuan, Cai Xin, Kong Jun. Pretreatment process on refractory gold ores with as // The Iron and Steel Institute of Japan. 2014. Vol. 54, Iss. 3. P. 543–547. https://doi.org/10.2355/isijinternational.54.543.
  23. Качор О. Л., Сарапулова Г. И., Богданов А. В. Исследование возможности иммобилизации подвижных форм мышьяка в техногенных субстратах // Записки Горного института. 2019. Т. 239. С. 596–602. https://doi.org/10.31897/PMI.2019.5.596.
  24. Zhu Y. N., Zhang X. H., Xie Q. L., Wang D. Q., Cheng G. W. Solubility and stability of calcium arsenates at 25оC // Water, Air, and Soil Pollution. 2006. Vol. 169. P. 221–238. https://doi.org/10.1007/s11270-006-2099-y.
  25. Nazari A. M., Radzinski R., Ghahreman A. Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic // Hydrometallurgy. 2017. Vol. 174. P. 258–281. https://doi.org/10.1016/j.hydromet.2016.10.011.
  26. Filippou D., St-Germain P., Grammatikopoulos T. Recovery of metal values from copper–arsenic minerals and other related resources // Mineral Processing and Extractive Metallurgy Review. 2007. Vol. 28. Iss. 4. P. 247–298. https://doi.org/10.1080/08827500601013009.
  27. Мамяченков С. В., Анисимова О. С., Костина Д. А. Совершенствование процесса осаждения трисульфида мышьяка из промывных вод серно-кислотного производства медеплавильных заводов // Известия вузов. Цветная металлургия. 2017. Iss. 2. С. 36–42. https://doi.org/10.17073/0021-3438-2017-2-36-42.
  28. Zhang Shaojian, Peiffer Stefan, Liao Xiaoting, Yang Zhengheng, Ma Xiaoming, He Di. Sulfidation of ferric (hydr) oxides and its implication on contaminants transformation: a review // Science of The Total Environment. 2022. Vol. 816. Р. 151574. https://doi.org/10.1016/j.scitotenv.2021.151574.
  29. Riveros P. A., Dutrizac J. E., Spencer P. Arsenic disposal practices in the metallurgical industry // Canadian Metallurgical Quarterly. 2001. Vol. 40. Iss. 4. P. 395–420. https://doi.org/10.1179/cmq.2001.40.4.395.
  30. Adelman J. G., Elouatik S., Demopoulos G. P. Investigation of sodium silicate-derived gels as encapsulants for hazardous materials – the case of scorodite // Journal of Hazardous Materials. 2015. Vol. 292. P. 108–117. https://doi.org/10.1016/j.jhazmat.2015.03.008.
  31. Corkhill C. L., Vaughan D. J. Arsenopyrite oxidation – a review // Applied Geochemistry. 2009. Vol. 24. Iss. 12. P. 2342–2361. https://doi.org/10.1016/j.apgeochem.2009.09.008.
  32. Lattanzi P., Da Pelo S., Musu E., Atzei D., Elsener B., Fantauzzi M. Enargite oxidation: a review // Earth-Science Reviews. 2008. Vol. 86. Iss. 1-4. P. 62–88. https://doi.org/10.1016/j.earscirev.2007.07.006.
  33. Zhao Yu, Zhao Hongbo, Abashina T., Vainshtein M. Review on arsenic removal from sulfide minerals: an emphasis on enargite and arsenopyrite // Minerals Engineering. 2021. Vol. 172. Р. 107133. https://doi.org/10.1016/j.mineng.2021.107133.
  34. Касымова Д. Р., Фокина С. Б. Влияние параметров автоклавной переработки упорного сульфидного золотосодержащего сырья на переход мышьяка в жидкую фазу // Металлургия XXI столетия глазами молодых: сб. докл. III Междунар. науч.-практ. конф. молодых ученых и студентов (г. Донецк, 25 мая 2017). Донецк: Изд-во Донецкого национального технического университета, 2017. С. 227–229.
  35. Conner J. R., Hoeffner S. L. A Critical Review of Stabilization/Solidification Technology // Environmental Science and Technology. 1998. Vol. 28. Iss. 4. P. 397–462. https://doi.org/10.1080/10643389891254250.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).