Studies of stress and strain in bucket teeth of earth-moving machines

Cover Page

Cite item

Full Text

Abstract

This paper aims to analyze the existing designs of bucket teeth in earth-moving machines with the purpose of selecting an optimal design in a scientifically grounded manner. The research objects included six design models of teeth of earth-moving machines made of alloyed manganese steel 110G13L. Teeth models were built using the KOMPAS-3D software. Lateral elastic internal stresses and elastic strains in the teeth models were determined using the COMSOL Multiphysics software. Lateral elastic internal stresses and elastic strains were calculated for the applied load of 9 kN in soft soil and 90 kN in rocky soil. Optimal teeth designs were determined for soils of various hardness. In soft soils, a ripper tooth and a combined curved tooth with an extra ripper tooth showed the optimum combination of efficiency and strength. Thus, provided that the elastic strain of a standard tooth in soft soils equals 100% and depending on the initial state, a ripper tooth and a combined curved tooth with an extra ripper tooth showed the strain values of 30–50% and 32–35%, respectively. In hard soils, a combined curved tooth with an extra ripper tooth and a regular curved tooth showed the optimum combination of efficiency and strength. Thus, provided that the elastic strain of a standard tooth in hard soil equals 100% and depending on the initial state, a combined curved tooth with an extra ripper tooth and a curved tooth showed the strain values of 18–20% and 42–45%, respectively. The feasibility of using buckets with combined teeth of optimal design in earth-moving machines was scientifically substantiated. Future research will investigate various bucket designs of earth-moving machines to find their optimal modifications for soils of various hardness.

About the authors

A. G. Osipov

Irkutsk National Research Technical University

Email: arthur.osipov@rambler.ru

U. A. Vasechkin

Irkutsk National Research Technical University

Email: ulyan.vase4kin@ya.ru

References

  1. Потехин В.М. Землеройная машина, виды и типы // СМИ «Вторая индустриализация России». URL: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/zemleroynaya-mashina-vidyi-i-tipyi/ (02.05.2022).
  2. Shehadeh A., Alshboul O., Tatari O., Alzubaidi M.A., ElSayed Salama A.H. Selection of heavy machinery for earthwork activities: a multi-objective optimization approach using a genetic algorithm // Alexandria Engineering Journal. 2022. Vol. 61. Iss. 10. P. 7555–7569. https://doi.org/10.1016/j.aej.2022.01.010.
  3. Valtonen K., Keltamäki K., Kuokkala V.-T. High-stress abrasion of wear resistant steels in the cutting edges of loader buckets // Tribology International. 2018. Vol. 119. P. 707–720. https://doi.org/10.1016/j.triboint.2017.12.013.
  4. Bošnjak S.M., Arsić M.A., Gnjatović N.B., Milenović I.L.J., Arsić D.M. Failure of the bucket wheel excavator buckets // Engineering Failure Analysis. 2018. Vol. 84. P. 247–261. https://doi.org/10.1016/j.engfailanal.2017.11.017.
  5. Mohajeri M.J., Bergh A.J., Jovanova J., Schott D.L. Systematic design optimization of grabs considering bulk cargo variability // Advanced Powder Technology. 2021. Vol. 32. Iss. 5. P. 1723–1734. https://doi.org/10.1016/j.apt.2021.03.027.
  6. Guevara J., Arevalo-Ramirez T., Yandun F., Torres-Torriti M., Cheein F.A. Point cloud-based estimation of effective payload volume for earthmoving loaders // Automation in Construction. 2020. Vol. 117. P. 103207. https://doi.org/10.1016/j.autcon.2020.103207.
  7. Mal B.C. Chapter 1 - Pond construction machinery // Aquacultural Facilities and Equipment. 2021. P. 1–22. https://doi.org/10.1016/B978-0-323-85691-1.00007-6.
  8. Botyan E., Pushkarev A. Improving the methodology of choosing machinery models for the formation of an excavator and vehicle fleet during the modernization of a mining transport system, with account for the Arctic specifics // Transportation Research Procedia. 2021. Vol. 57. P. 106–112. https://doi.org/10.1016/j.trpro.2021.09.031.
  9. Keleş A., Yildirim M. Improvement of mechanical properties by means of titanium alloying to steel teeth used in the excavator // Engineering Science and Technology, an International Journal. 2020. Vol. 23. Iss. 5. P. 1208–1213. https://doi.org/10.1016/j.jestch.2019.12.003.
  10. Li Xinggao, Yuan Dajun, Jiang Xingqi, Wang Fei. Damages and wear of tungsten carbide-tipped rippers of tunneling machines used to cutting large diameter reinforced concrete piles // Engineering Failure Analysis. 2021. Vol. 127. P. 105533. https://doi.org/10.1016/j.engfailanal.2021.105533.
  11. Liu Yi, Dai Feng. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading // Journal of Rock Mechanics and Geotechnical Engineering. 2021. Vol. 13. Iss. 5. P. 1203–1230. https://doi.org/10.1016/j.jrmge.2021.03.012.
  12. Mishra A.K., Aryal B. Operational maintenance analysis of actively utilized road construction equipments // Materials Today: Proceedings. 2021. Vol. 57. P. 256–264. https://doi.org/10.1016/j.matpr.2021.01.051.
  13. Дэлэг Д., Ванчинжав С., Пурэвдорж Н. Исследование самозатачивания зуба ковша экскаватора // Горный информационно-аналитический бюллетень. 2008. Iss. S1. С. 402–416.
  14. Armstrong M., Lagos T., Emery X., Homem-de-Mello T., Lagos G., Sauré D. Adaptive open-pit mining planning under geological uncertainty // Resources Policy. 2021. Vol. 72. P. 102086. https://doi.org/10.1016/j.resourpol.2021.102086.
  15. Кадыров С.М., Шукуров Р.У., Ишунин А.К. Численный метод расчета долговечности режущих органов землеройных машин // Узбекский журнал нефти и газа. 2000. № 3. С. 43–48.
  16. Шукуров Р.У. Биомеханическое моделирование в создании режущих органов землеройных машин // Строительные и дорожные машины. 2001. № 3. С. 37–39.
  17. Густов Ю.И. Шукуров Р.У. Биомеханическое моделирование в строительной технике // Строительные материалы и оборудование технологии ХХI века. 2007. № 12. С. 46–47.
  18. Густов Ю.И., Шукуров Р.У., Воронина Ю.В. Биомеханическое моделирование в землеройной техники // Новые материалы и технологии в машиностроении. 2008. № 7. С. 16–19.
  19. Таджиходжаева М.Р., Шермухамедов А.А. Экскаватор с адаптирующимися зубьями ковша при разработке каменистых грунтов // Подъемно-транспортные, строительные, дорожные, путевые машины и робототехнические комплексы: сб. докл. XXIII Московской Междунар. межвузовской науч.-техн. конф. студентов, магистрантов, аспирантов и молодых ученых (г. Москва, 4 апреля 2019 г.). М.: МИСИ – МГСУ, 2019. С. 412–416.
  20. Бочаров B.C., Козбагаров P.A. Адаптация бульдозерного оборудования к изменению грунтовых условий // Особенности проектирования строительства и эксплуатации автомобильных дорог в Восточно-Сибирском регионе: матер. Междунар. науч.-техн. конф. (г. Иркутск, 23 мая 1998 г.). Иркутск: ИрГТУ, 1998. С. 221–225.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).