Evaluation of total solar radiation with daily breakdown based on regression models
- Authors: Malenkova I.N.1, Shakirov V.A.2
-
Affiliations:
- Bratsk State University
- Melentiev Energy Systems Institute SB RAS
- Issue: Vol 27, No 1 (2023)
- Pages: 109-122
- Section: Power Engineering
- URL: https://medbiosci.ru/2782-4004/article/view/382687
- DOI: https://doi.org/10.21285/1814-3520-2023-1-109-122
- ID: 382687
Cite item
Full Text
Abstract
The study aims to propose new regression models using available weather data by analyzing the data published on the development of regression models for evaluating the flux of total solar radiation. Following an analysis of literature sources, primary stages in developing regression models and approaches to their implementation are described. Models are developed and compared for accuracy based on weather data (maximum and minimal temperature, air humidity, overall and lower cloudiness) in Irkutsk over 2007–2019. For calibration and validation of the models, open databases of ground measurements of weather stations were used. Ten known and seven new regression models were calibrated and validated, including three models based on the support vector method. The new models based on air temperature and humidity, atmospheric pressure, as well as overall and lower cloudiness, showed the highest accuracy in evaluating the total solar radiation with daily breakdown. The maximum mean absolute error in evaluating daily total solar radiation over 2016–2019 comprised 627.52 W·h/m2·day for the analyzed known models, 504.7 W·h/m2·day for the newly proposed regression models, and 463.2 W·h/m2·day for the regression models based on the support vector method. The conducted analysis of the mean bias error revealed models having the highest accuracy in evaluating monthly and annual sums of total solar radiation were determined. These include a known regression model using air humidity data and a regression model based on the support vector method.
About the authors
I. N. Malenkova
Bratsk State University
Email: 1m.inessa13@yandex.ru
ORCID iD: 0000-0003-3176-2422
V. A. Shakirov
Melentiev Energy Systems Institute SB RAS
Email: shakirov@isem.irk.ru
ORCID iD: 0000-0001-8629-9549
References
- Кваша Н.В., Бондарь Е.Г. Распределенная и цифровая энергетика как инновационные элементы четвертого энергоперехода // π-Economy. 2021. Т. 14. Вып. 6. С. 133. https://doi.org/10.18721/JE.14605.
- Кулапин А.И. Энергетический переход: Россия в глобальной повестке // Энергетическая политика. 2021. № 7. С. 10–15.
- Jia Dongyu, Yang Liwei, Lv Tao, Liu Weiping, Gao Xiaoqing, Zhou Jiaxin. Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions // Renewable Energy. 2022. Vol. 187. Р. 896–906. https://doi.org/10.1016/j.renene.2022.02.002.
- Zhang Jianyuan, Zhao Li, Deng Shuai, Xu Weicong, Zhang Ying. A critical review of the models used to estimate solar radiation // Renewable and Sustainable Energy Reviews. 2017. Vol. 70. Р. 314–329. https://doi.org/10.1016/j.rser.2016.11.124.
- Hassan M.A., Khalil A., Kaseb S., Kassem M.A. Independent models for estimation of daily global solar radiation: a review and a case study // Renewable and Sustainable Energy Reviews. 2018. Vol. 82. Part 1. Р. 1565–1575. https://doi.org/10.1016/j.rser.2017.07.002.
- Li Huashan, Ma Weibin, Lian Yongwang, Wang Xianlong, Zhao Liang. Global solar radiation estimation with sunshine duration in Tibet, China // Renewable Energy. 2011. Vol. 36. Iss. 11. Р. 3141–3145. https://doi.org/10.1016/j.renene.2011.03.019.
- Yıldırım H.B., Teke A., Antonanzas-Torres F. Evaluation of classical parametric models for estimating solar radiation in the Eastern Mediterranean region of Turkey // Renewable and Sustainable Energy Reviews. 2018. Vol. 82. Part 3. P. 2053–2065. https://doi.org/10.1016/j.rser.2017.08.033.
- Chukwujindu N.S. A comprehensive review of empirical models for estimating global solar radiation in Africa // Renewable and Sustainable Energy Reviews. 2017. Vol. 78. Р. 955–995. https://doi.org/10.1016/j.rser.2017.04.101.
- Chen Ji-Long, He Lei, Yang Hong, Ma Maohua, Chen Qiao, Wu Sheng-Jun, et al. Empirical models for estimating monthly global solar radiation: a most comprehensive review and comparative case study in China // Renewable and Sustainable Energy Reviews. 2019. Vol. 108. Р. 91–111. https://doi.org/10.1016/j.rser.2019.03.033.
- Li Mao-Fen, Guo Peng-Tao, Dai Shengpei, Luo Hongxia, Liu Enping, Li Yuping. Empirical estimation of daily global solar radiation with contrasting seasons of rain and drought characterize over tropical China // Journal of Cleaner Production. 2020. Vol. 266. Р. 121915. https://doi.org/10.1016/j.jclepro.2020.121915.
- Oyewola O.M., Patchali T.E., Ajide O.O., Satyanand S., Matthew O.J. Global solar radiation predictions in Fiji Islands based on empirical models // Alexandria Engineering Journal. 2022. Vol. 61. Iss. 11. P. 8555–8571. https://doi.org/10.1016/j.aej.2022.01.065.
- Quej V.H., Almorox J., Ibrakhimov M., Saito L. Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico // Energy Conversion and Management. 2016. Vol. 110. Р. 448–456. https://doi.org/10.1016/j.enconman.2015.12.050.
- Nematchoua M.K., Orosa J.A., Afaifia M. Prediction of daily global solar radiation and air temperature using six machine learning algorithms; a case of 27 European countries // Ecological Informatics. 2022. Vol. 69. Р. 101643. https://doi.org/10.1016/j.ecoinf.2022.101643.
- Naserpour S., Zolfaghari H., Firouzabadi P. Calibration and evaluation of sunshine-based empirical models for estimating daily solar radiation in Iran // Sustainable Energy Technologies and Assessments. 2020. Vol. 42. P. 100855. https://doi.org/10.1016/j.seta.2020.100855.
- Besharat F., Dehghan A.A., Faghih A.R. Empirical models for estimating global solar radiation: a review and case study // Renewable and Sustainable Energy Reviews. 2013. Vol. 21. Р. 798–821. https://doi.org/10.1016/j.rser.2012.12.043.
- Елагина Е.А., Маргун А.А. Исследование методов машинного обучения в задаче идентификации клеток крови // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. № 6. С. 903–911. https://doi.org/10.17586/2226-1494-2021-21-6-903-911.
- Винокуров М.А., Суходолов А.П. Экономика Иркутской области: в 4 т. Иркутск: БГУПЭ, 1998. Т. 1. 203 с.
- Кузеванов В.Я., Сизых С.В. Ресурсы ботанического сада Иркутского государственного университета: образовательные, научные и социально-экологические аспекты. Иркутск: Иркутский государственный университет, 2005. С. 30–31.
- Bounoua Z, Chahidi L.O., Mechaqrane A. Estimation of daily global solar radiation using empirical and machinelearning methods: a case study of five Moroccan locations // Sustainable Materials and Technologies. 2021. Vol. 28. Р. e00261. https://doi.org/10.1016/j.susmat.2021.e00261.
- Ahamed M.S., Guo Huiqing, Tanino K. Cloud coverbased models for estimation of global solar radiation: a review and case study // International Journal of Green Energy. 2022. Vol. 19. Iss. 2. https://doi.org/10.1080/15435075.2021.1941043.
Supplementary files


