Selecting optimal power consumption patterns in the Republic of Altai local grid system based on renewable and alternative power sources

Cover Page

Cite item

Full Text

Abstract

The authors develop a system of optimal planning of power consumption in the Republic of Altai local grid system based on a large proportion of renewable and alternative generating power sources. The studies were carried out using the linear programming method for power consumption patterns used by generating consumers. Power consumption charts by seasons and hourly retrospective rows of weather data by wind current velocity and solar insolation over 2021 were used as source data. Wind turbines, solar photovoltaic facilities, hydro-power plants, and energy accumulators were considered as local power consumption facilities to calculate electricity generation. The article provides calculation results for electricity generation in winter, since this is when a higher power deficiency is observed. It was shown that power consumers in the region under study can independently install additional generating power sources in the form of wind turbines, solar photovoltaic facilities, hydro-power plants, and energy accumulators due to electricity deficiency. Their combined generation mitigates the unpredictability of power generation by renewable sources. The authors propose a method that allows generating consumers to minimize their material and financial expenses and reduce the carbon footprint. The significance of the study consists in the substantiation of a hybrid power supply system with a high proportion of renewable and alternative power sources, which is implemented in the Republic of Altai and can be reproduced in other local energy systems with similar weather conditions.

About the authors

V. Z. Manusov

Novosibirsk State Technical University

Email: Manusov36@mail.ru

A. V. Kalanakova

Novosibirsk State Technical University

Email: aysulu.kalanakova@yandex.ru

References

  1. Jurasz J., Canales F.A., Kies A., Guezgouz M., Beluco A. A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions // Solar Energy. 2020. Vol. 195. P. 703–724. https://doi.org/10.1016/j.solener.2019.11.087.
  2. Feddaoui O., Toufouti R., Labed D., Meziane S. Control of an isolated microgrid including renewable energy resources // Serbian Journal of Electrical Engineering. 2020. Vol. 17. Iss. 3. P. 297–312. https://doi.org/10.2298/SJEE2003297F.
  3. Bhatti H.J., Danilovic M. Making the world more sustainable: enabling localized energy generation and distribution on decentralized smart grid systems // World Journal of Engineering and Technology. 2018. Vol. 6. No. 2. P. 350–382. https://doi.org/10.4236/wjet.2018.62022.
  4. Манусов В.З., Назаров М.Х. Оптимизация режимов электропотребления автономной электрической системы с возобновляемыми и альтернативными источниками энергии // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 4. С. 810–820. https://doi.org/10.21285/1814-3520-2020-4-810-820.
  5. Sekretarev Yu.A., Sultonov Sh.M., Nazarov M.Kh. Optimization of long-term modes of hydropower plants of the energy system of Tajikistan // 2nd International Conference on Industrial Engineering, Applications and Manufacturing. 2016. https://doi.org/10.1109/ICIEAM.2016.7911428.
  6. Асанов М.С., Кокин С.Е., Жабудаев Т.Ж., Дмитриев С.А., Обозов А. Дж., Сафаралиев М. Х.. Структурная модель алгоритма расчета микро-ГЭС с учетом гидрологических параметров малых водотоков горных рек в центральной Азии // Альтернативная энергетика и экология. 2020. № 34-36. С. 22–36. https://doi.org/10.15518/isjaee.2020.34-36.022-036.
  7. Ausfelder F., Beilmann C., Bertau M., Bräuninger S., Heinzel A., Hoer R., et al. Energy storage as part of a secure energy supply // ChemBioEng Reviews. 2017. Vol. 4. P. 144–210. https://doi.org/10.1002/cben.201700004.
  8. Lawan S.M., Abidin W.A.W.Z. A review of hybrid renewable energy systems based on wind and solar energy: modeling, design and optimization // Wind Solar Hybrid Renewable Energy System. 2018. https://doi.org/10.5772/intechopen.85838.
  9. Аюев Б.И., Давыдов В.В., Ерохин П.М. Оптимизационные модели ближайших предельных режимов электрических систем // Электричество. 2011. № 3. С. 1–9.
  10. Frangopoulos C.A., Spakovsky M.R., Sciubba E. A brief review of methods for the design and synthesis optimization of energy systems // International Journal Applied Thermodynamics. 2002. Vol. 5. No. 4. P. 151–160. https://doi.org/10.5541/ijot.97.
  11. Королев М.Л., Макеечев В.А., Суханов О.А., Шаров Ю.В. Оптимизация режимов электроэнергетических систем на основе моделирования // Электричество. 2006. № 3. С. 2–16.
  12. Jurasz J., Dabek P.B., Kazmierczak B., Kies A., Wdowikowski M. Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland) // Energy. 2018. Vol. 161. P. 183–192. https://doi.org/10.1016/j.energy.2018.07.085.
  13. Kougias I., Szabó S., Monforti-Ferrario F., Huld T., Bódis K. A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems // Renewable Energy. 2016. Vol. 87. Part 2. P. 1023–1030. https://doi.org/10.1016/j.renene.2015.09.073.
  14. Li He, Liu Pan, Guo Shenglian, Ming Bo, Cheng Lei, Yang Zhikai. Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization // Applied Energy. 2019. Vol. 238. P. 863–875. https://doi.org/10.1016/j.apenergy.2019.01.111.
  15. Parastegari M., Hooshmand R.-A., Khodabakhshian A., Zare A.-H. Joint operation of wind farm, photovoltaic, pump-storage and energy storage devices in energy and reserve markets // International Journal of Electrical Power & Energy Systems. 2015. Vol. 64. P. 275–284. https://doi.org/10.1016/j.ijepes.2014.06.074.
  16. Манусов В.З., Ганиев З.С., Султонов Ш.М. Оценка доступности энергетических ресурсов за счет солнечной радиации в Республике Таджикистан // Научные проблемы транспорта Сибири и Дальнего Востока. 2018. № 1. С. 174–177. http://doi.org/10.17212/1814-1196-2020-1-189-203.
  17. Гулов Д.Ю., Давлатов А.М., Горт М.В. Эффективность электроснабжения горных районов Таджикистана // Международный научно-исследовательский журнал. 2021. № 1. С. 61–66. https://doi.org/10.23670/IRJ.2021.103.1.008.
  18. Удалов С.Н., Манусов В.З. Моделирование ветроэнергетических установок и управление ими на основе нечеткой логики: монография. Новосибирск: НГТУ, 2013. 200 с.
  19. Шакиров В.А., Артемьев А.Ю. Выбор площадки размещения ветроэлектростанции с использованием компьютерного моделирования рельефа местности и ветрового потока // Вестник Иркутского государственного технического университета. 2017. Т. 21. № 11. С. 133–143. https://doi.org/10.21285/1814-3520-2017-11-133-143.
  20. Aza-Gnandji M., Fifatin F.-X., Hounnou A.H.J., Dubas F., Chamagne D., Espanet C.,et al. Complementarity between solar and wind energy potentials in Benin Republic // Advanced Engineering Forum. 2018. Vol. 28. P. 128–138. https://doi.org/10.4028/www.scientific.net/AEF.28.128.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).