Kinetics and mechanism of oxidizing roasting of sulfide copper-cobalt ore
- Authors: Klyushnikov A.M.1, Gulyaeva R.I.1, Pikalov S.M.1, Maltsev G.I.1
-
Affiliations:
- Institute of Metallurgy of the Ural Branch of the RAS
- Issue: Vol 27, No 1 (2023)
- Pages: 188-218
- Section: Metallurgy
- URL: https://medbiosci.ru/2782-4004/article/view/382693
- DOI: https://doi.org/10.21285/1814-3520-2023-1-188-218
- ID: 382693
Cite item
Full Text
Abstract
About the authors
A. M. Klyushnikov
Institute of Metallurgy of the Ural Branch of the RAS
Email: amk8@mail.ru
ORCID iD: 0000-0001-8239-3757
R. I. Gulyaeva
Institute of Metallurgy of the Ural Branch of the RAS
Email: gulroza@mail.ru
ORCID iD: 0000-0003-2860-0377
S. M. Pikalov
Institute of Metallurgy of the Ural Branch of the RAS
Email: s.pikalov@mail.ru
ORCID iD: 0000-0001-6292-0468
G. I. Maltsev
Institute of Metallurgy of the Ural Branch of the RAS
Email: maltsewg@yandex.ru
ORCID iD: 0000-0002-0750-0070
References
- Schlesinger M.E., King M.J., Sole K.C., Davenport W.G. Extractive metallurgy of copper. 5th Edition. Oxford: Elsevier, 2011.
- Мелекесцева И.Ю., Масленников В.В., Масленникова С.П. Элементы-примеси в сульфидах Дергамышского кобальт-медноколчеданного месторождения, Южный Урал: форма нахождения и источники вещества // Литосфера. 2020. Т. 20. № 4. С. 499–516. https://doi.org/10.24930/1681-9004-2020-20-4-499-516.
- Селиванов Е.Н., Гуляева Р.И., Клюшников А.М. Исследование структуры и фазового состава медно-кобальтовых сульфидных руд Дергамышского месторождения // Цветные металлы. 2016. № 3. С. 13–17. https://doi.org/10.17580/tsm.2016.03.02.
- Нагаева С.П., Мезенцева О.П., Козорез М.В. Минералогические исследования медных кобальтсодержащих руд Дергамышского месторождения // Горный журнал. 2014. № 11. С. 31–34.
- Cusano G., Gonzalo M.R., Farrell F., Remus R., Roudier S., Sancho L.D. Best available techniques (BAT) reference document for the main non-ferrous metals Industries. Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control). Joint Research Centre, 2017. Р. 902–910. https://doi.org/10.2760/8224.
- Резник И.Д., Соболь С.И., Худяков В.М. Кобальт: в 2 т. Т. 1. М.: Машиностроение, 1995. 440 с.
- Crundwell F.K., Moats M.S., Ramachandran V., Robinson T.G., Dawenport W.G. Extractive metallurgy of nickel, cobalt and platinum-group metals. Oxford: Elsevier, 2011. 622 р.
- Warner A.E.M., Diaz C.M., Dalvi A.D., Mackey P.J., Tarasov A.V., Jones R.T. World nonferrous smelter survey. Part IV: Nickel: Sulfide // JOM. 2007. Vol. 59. P. 58–72. https://doi.org/10.1007/s11837-007-0056-x.
- Selivanov E.N., Klyushnikov A.M., Gulyaeva R.I. Use of quartz-containing materials as fluxes in copper smelting production // Metallurgist. 2017. Vol. 61. Iss. 1-2. P. 155–161. https://doi.org/10.1007/s11015-017-0469-x.
- Selivanov E.N., Klyushnikov A.M., Gulyaeva R.I. Application of sulfide copper ores oxidizing roasting products as sulfidizing agent during melting nickel raw materials to matte // Metallurgist. 2019. Vol. 63. Iss. 7-8. P. 867–887. https://doi.org/10.1007/s11015–019–00901–z.
- Klyushnikov A.M., Gulyaeva R.I., Selivanov E.N., Pikalov S.M. Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings // International Journal of Minerals, Metallurgy and Materials. 2021. Vol. 28. Iss. 9. P. 1469–1477. https://doi.org/10.1007/s12613-020-2109-x.
- Klyushnikov A., Gulyaeva R., Pikalov S. Cold crystallization kinetics of slag from the joint smelting of oxidized nickel and sulfide copper ores // Journal of Thermal Analysis and Calorimetry. 2022. Vol. 147. P. 12165–12176. https://doi.org/10.1007/s10973-022-11429-x.
- Klyushnikov A.M. Modeling of exchange interactions in melts formed during joint smelting of oxidized nickel ores and pyrrhotite concentrates // Metallurgist. 2022. Vol. 66. Iss. 1-2. P. 190–199. https://doi.org/10.1007/s11015-022-01314-1.
- Božinović K., Štrbac N., Mitovski A., Sokić M., Minić D., Marković B., Stojanović J. Thermal decomposition and kinetics of pentlandite-bearing ore oxidation in the air atmosphere // Metals. 2021. Vol. 11. Iss. 9. P. 1364. https://doi.org/10.3390/met11091364.
- Смирнов В.И., Тихонов А.И. Обжиг медных руд и концентратов (теория и практика). М.: Металлургия, 1956. 255 с.
- Devia M., Wilkomirsky I., Parra R. Roasting kinetics of high-arsenic copper concentrates: a review // Mining, Metallurgy & Exploration. 2012. Vol. 29. Iss. 2. P. 121–128. https://doi.org/10.1007/BF03402403.
- Dimitrov R., Boyanov B. Investigation of the oxidation of metal sulphides and sulphide concentrates // Thermochimica Acta. 1983. Vol. 64. Iss. 1-2. P. 27–37. https://doi.org/10.1016/0040-6031(83)80125-7.
- Hua Yixin, Cai Chaojun, Cui Yan. Microwave-enhanced roasting of copper sulfide concentrate in the presence of CaCO3 // Separation and Purification Technology. 2006. Vol. 50. Iss. 1. P. 22–29. https://doi.org/10.1016/j.seppur.2005.11.003.
- Mitovski A., Strbac N., Mihajlovic I., Sokić M., Stojanović J. Thermodynamic and kinetic analysis of the polymetallic copper concentrate oxidation process // Journal of Thermal Analysis and Calorimetry. 2014. Vol. 118. P. 1277–1285. https://doi.org/10.1007/s10973-014-3838-8.
- Prasad S., Pandey B.D. Thermoanalytical studies on copper-iron sulphides // Journal of Thermal Analysis and Calorimetry. 1999. Vol. 58. P. 625–637. https://doi.org/10.1023/A:1010108729034.
- Prasad P.N., Lennartsson A., Samuelsson C. A mineralogical investigation of sintering in Cu-rich polymetallic concentrates during roasting in inert atmosphere // Metallurgical and Materials Transactions B. 2020. Vol. 51. P. 1446–1459. https://doi.org/10.1007/s11663-020-01850-8.
- Shamsuddin M., Sohn H.Y. Constitutive topics in physical chemistry of high-temperature nonferrous metallurgy – a review: Part 1. Sulfide roasting and smelting // JOM. 2019. Vol. 71. No. 9. P. 3253–3265. https://doi.org/10.1007/s11837-019-03620-7.
- Souza R., Queiroz C., Brant J., Brocchi E. Pyrometallurgical processing of a low copper content concentrate based on a thermodynamic assessment // Minerals Engineering. 2019. Vol. 130. P. 156–164. https://doi.org/10.1016/j.mineng.2018.10.015.
- Wan Xingbang, Shi Junjie, Taskinen P., Jokilaakso A. Extraction of copper from copper-bearing materials by sulfation roasting with SO2–O2 gas // JOM. 2020. Vol. 72. No. 10. P. 3436–3446. https://doi.org/10.1007/s11837-020-04300-7.
- Wilkomirsky I., Parra R., Parada F., Balladares E., Seguel E., Etcheverry J., Díaz R. Thermodynamic and kinetic mechanisms of bornite/chalcopyrite/magnetite formation during partial roasting of high-arsenic copper concentrates // Metallurgical and Materials Transactions B. 2020. Vol. 51. P. 1540–1551. https://doi.org/10.1007/s11663-020-01870-4.
- Yang Fu-qiang, Wu Chao, Cui Yan, Lu Guang. Apparent activation energy for spontaneous combustion of sulfide concentrates in storage yard // Transactions of Nonferrous Metals Society of China. 2011. Vol. 21. Iss. 2. P. 395–401. https://doi.org/10.1016/S1003-6326(11)60727-9.
- Živcović Ž.D., Mitevska N., Savović V. Kinetics and mechanism of the chalcopyrite-pyrite concentrate oxidation process // Thermochimica Acta. 1996. Vol. 282-283. P. 121–130. https://doi.org/10.1016/0040-6031(96)02883-3.
- Chen T.T., Dutrizac J.E. Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates // JOM. 2004. Vol. 56. P. 46–51. https://doi.org/10.1007/s11837-004-0235-y.
- Снурников А.П. Гидрометаллургия цинка. М.: Металлургия, 1981. 384 с.
- Dunn J.G., Jayaweera S.A.A. Effect of heating rate on the TG curve during the oxidation of nickel sulphide concentrates // Thermochimica Acta. 1983. Vol. 61. Iss. 3. P. 313–317.
- Yu Dawei, Utigard T.A. TG/DTA study on the oxidation of nickel concentrate // Thermochimica Acta. 2012. Vol. 533. P. 56–65. https://doi.org/10.1016/j.tca.2012.01.017.
- Thoumsin F.J., Coussement R. Fluid-bed roasting reactions of copper and cobalt sulfide concentrates // JOM. 1964. Vol. 16. P. 831–834. https://doi.org/10.1007/BF03378299.
- Hu Guilin, Dam-Johansen Kim, Wedel S., Hansen J.P. Decomposition and oxidation of pyrite // Progress in Energy and Combustion Science. 2006. Vol. 32. Iss. 3. P. 295–314. https://doi.org/10.1016/J.PECS.2005.11.004.
- Dunn J.G., Mackey L.C. The measurement of ignition temperatures and extents of reaction on iron and iron-nickel sulfides // Journal of Thermal Analysis. 1991. Vol. 37. P. 2143–2164. https://doi.org/10.1007/BF01905584.
- Luganov V.A., Shabalin V.I. Thermal dissociation of pyrite during processing of pyrite-containing raw materials // Canadian Metallurgical Quarterly. 1994. Vol. 33. Iss. 3. P. 169–174. http://dx.doi.org/10.1179/cmq.1994.33.3.169.
- Dunn J.G. The oxidation of sulphide minerals // Thermochimica Acta. 1997. Vol. 300. Iss. 1-2. P. 127–139. https://doi.org/10.1016/S0040-6031(96)03132-2.
- Eneroth E., Koch C.B. Crystallite size of haematite from thermal oxidation of pyrite and marcasite – effects of grain size and iron disulphide polymorph // Minerals Engineering. 2003. Vol. 16. Iss. 11. P. 1257–1267. https://doi.org/10.1016/j.mineng.2003.07.004.
- Ferrow E.A., Mannerstrand M., Sjöberg B. Reaction kinetics and oxidation mechanisms of the conversion of pyrite to ferrous sulphate: a Mössbauer spectroscopy study // Hyperfine Interactions. 2005. Vol. 163. P. 109–119. https://doi.org/10.1007/s10751-005-9200-6.
- Aylmore M.G., Lincoln F.J. Mechanochemical millinginduced reactions between gases and sulfide minerals. I. Reactions of SO2 with arsenopyrite, pyrrhotite and pyrite // Journal of Alloys and Compounds. 2000. Vol. 309. Iss. 1-2. P. 61–74. https://doi.org/10.1016/S0925-8388(00)00916-6.
- Vázquez M., Moreno-Ventas I., Raposo I., Palma A., Díaz M.J. Kinetic of pyrite thermal degradation under oxidative environment // Journal of Thermal Analysis and Calorimetry. 2020. Vol. 141. P. 1157–1163. https://doi.org/10.1007/s10973-019-09098-4.
- Ruan Shufeng, Wang Chengyan, Jie Xiaowu, Yin Fei, Zhang Yonglu, Yao Zhichao, et al. Kinetics of pyrite multistep thermal decomposition in refractory gold sulphide concentrates // Journal of Thermal Analysis and Calorimetry. 2022. Vol. 147. P. 3689–3702. https://doi.org/10.1007/s10973-021-10761-y.
- Wang Luyi, Fan B.W., He Y.T., Li P., Yin D.Q., Hu Y.H. Characteristics of minerals and their associations of transformation processes in pyrite at elevated temperatures: an X-ray diffraction study // Ironmaking Steelmaking. 2014. Vol. 41. Iss. 2. P. 147–152. https://doi.org/10.1179/1743281213Y.0000000113.
- Xu Hongwu, Guo Xiaofeng, Seaman L.A., Harrison A.J., Obrey S.J., Page K. Thermal desulfurization of pyrite: an in situ high-T neutron diffraction and DTA–TGA study // Journal of Materials Research. 2019. Vol. 34. P. 3243–3253. https://doi.org/10.1557/jmr.2019.185.
- Zhang Yan, Li Qian, Liu Xiaoliang, Xu Bin, Yang Yongbin, Jiang Tao. A thermodynamic analysis on the roasting of pyrite // Minerals. 2019. Vol. 9. Iss. 4. Р. 220. https://doi.org/10.3390/min9040220.
- Jorgensen F.R.A., Moyle F.J. Phases formed during the thermal analysis of pyrite in air // Journal of Thermal Analysis. 1982. Vol. 25. P. 473–485. https://doi.org/10.1007/BF01912973.
- Aracena Á., Jerez Ó., Ortíz R., Morales J. Pyrite oxidation kinetics in an oxygen-nitrogen atmosphere at temperatures from 400 to 500°C // Canadian Metallurgical Quarterly. 2016. Vol. 55. Iss. 2. P. 195–201. http://doi.org/10.1080/00084433.2015.1126904.
- Reimers G.W., Hjelmstad K.E. Analysis of the oxidation of chalcopyrite, chalcocite, galena, pyrrhotite, marcasite, and arsenopyrite // Department of the Interior, Bureau of Mines. Report of investigations 9118 (United States. Bureau of Mines). Pittsburgh, 1987.
- Malek T.J., Chaki S.H., Deshpande M.P. Structural, morphological, optical, thermal and magnetic study of mackinawite FeS nanoparticles synthesized by wet chemical reduction technique // Physica B: Condensed Matter. 2018. Vol. 546. P. 59–66. https://doi.org/10.1016/j.physb.2018.07.024.
- Asaki Z., Matsutomo T., Tanabe T., Condo Y. Oxidation of dense iron sulfide // Metallurgical and Materials Transactions B. 1983. Vol. 14. P. 109–116. https://doi.org/10.1007/BF02670877.
- Kennedy T., Sturman B.T. The oxidation of iron (II) sulfide // Journal of Thermal Analysis. 1975. Vol. 8. P. 329–337. https://doi.org/10.1007/BF01904010.
- Asaki Z., Condo Y. Oxidation kinetics of iron sulfide in the form of dense plate, pellet and single particle // Journal of Thermal Analysis. 1989. Vol. 35. P. 1751–1759. https://doi.org/10.1007/BF01911664.
- Coombs P.G., Munir Z.A. The mechanism of oxidation of ferrous sulfide (FeS) powders in the range of 648 to 923 K // Metallurgical and Materials Transactions B. 1989. Vol. 20. P. 661–670. https://doi.org/10.1007/BF02655922.
- Gulyaeva R.I., Selivanov E.N., Vershinin A.D. Nonisothermal oxidation of pyrrhotines // Russian Metallurgy (Metally). 2003. Vol. 4. P. 299–304.
- Alksnis A., Li B., Elliott R., Barati M. Kinetics of oxidation of pyrrhotite // The Minerals, Metals & Materials Series / eds. B. Davis. Cham: Springer, 2018. Р. 403–413. https://doi.org/10.1007/978–3–319–95022–8_32.
- Habashi F., Dugdale R. The action of sulfur trioxide on chalcopyrite // Metallurgical and Materials Transactions B. 1973. Vol. 4. P. 1553–1556. https://doi.org/10.1007/BF02668007.
- Leung L.S. The overall kinetics of roasting of chalcopyrite // Metallurgical and Materials Transactions B. 1975. Vol. 6. P. 341–343. https://doi.org/10.1007/BF02913578.
- Aneesuddin M., Char P.N., Hussain M.R., Saxena E.R. Studies on thermal oxidation of chalcopyrite from Chitradurga, Karnataka State, India // Journal of Thermal Analysis. 1983. Vol. 26. P. 205–215. https://doi.org/10.1007/BF01913204.
- Chaubal P.C., Sohn H.Y. Intrinsic kinetics of the oxidation of chalcopyrite particles under isothermal and nonisothermal conditions // Metallurgical and Materials Transactions B. 1986. Vol. 17. P. 51–60. https://doi.org/10.1007/BF02670818.
- Cocić M.B., Logar M.M., Cocić S.Lj., Dević S.S., Manasijević D.M. Transformation of chalcopyrite in the roasting process of copper concentrate in fluidized bed reactor // JOM. 2011. Vol. 63. P. 55–59. https://doi.org/10.1007/s11837-011-0078-2.
- Živcović Ž., Štrbać N., Živcović D., Velinovski V., Mihajlović I. Kinetic study and mechanism of chalcocite and covellite oxidation process // Journal of Thermal Analysis and Calorimetry. 2005. Vol. 79. P. 715–720. https://doi.org/10.1007/s10973-005-0601-1.
- Ramakrishna Rao V.V.V.N.S., Abraham K.P. Kinetics of oxidation of copper sulfide // Metallurgical and Materials Transactions B. 1971. Vol. 2. P. 2463–2470. https://doi.org/10.1007/BF02814883.
- Dunn J.G., Ginting A.R., O’Connor B. A thermoanalytical study of the oxidation of chalcocite // Journal of Thermal Analysis. 1994. Vol. 41. P. 671–686. https://doi.org/10.1007/BF02549341.
- Benlyamani M., Ajersch F. Agglomeration of particles during roasting of zinc sulfide concentrates // Metallurgical and Materials Transactions B. 1986. Vol. 17. P. 647–656. https://doi.org/10.1007/BF02657127.
- Dimitrov R., Bonev I. Mechanism of zinc sulphide oxidation // Thermochimica Acta. 1986. Vol. 106. P. 9–25. https://doi.org/10.1016/0040-6031(86)85111-5.
- Dimitrov R.I., Boyanov B.S. Oxidation of metal sulphides and determination of characteristic temperatures by DTA and TG // Journal of Thermal Analysis and Calorimetry. 2000. Vol. 61. P. 181–189. https://doi.org/10.1023/A:1010181112713.
- Graydon J.W., Kirk D.W. A Microscopic study of the transformation of sphalerite particles during the roasting of zinc concentrate // Metallurgical and Materials Transactions B. 1988. Vol. 19. P. 141–146. https://doi.org/10.1007/BF02666500.
- Gulyaeva R.I., Selivanov E.N., Pikalov S.M. Mechanism and kinetics of the thermal oxidation of natural sphalerite // Russian Metallurgy (Metally). 2018. Vol. 3. P. 221–227. https://doi.org/10.1134/S0036029518030047.
- Natesan K., Philbrook W.O. Oxidation kinetic studies of zinc sulfide in a fluidized bed reactor // Metallurgical and Materials Transactions B. 1970. Vol. 1. P. 1353–1360. https://doi.org/10.1007/BF02900254.
- Marzoughi O., Halali M., Moradkhani D., Pickle C.A. Kinetics of roasting of a sphalerite concentrate // The Minerals, Metals & Materials Series / eds. B. Davis. Extraction 2018. The Minerals, Metals & Materials Series. Cham: Springer, 2018. Р. 559–571. https://doi.org/10.1007/978-3-319-95022-8_44.
- Asaki Z., Nitta M., Tanabe T., Condo Y. Oxidation of cobalt sulfide // Metallurgical and Materials Transactions B. 1986. Vol. 17. P. 367–373. https://doi.org/10.1007/BF02655084.
- Boyanov B.S. Differential thermal study of the interactions between sulphates, oxides and ferrites // Thermochimica Acta. 1997. Vol. 302. Iss. 1-2. P. 109–115. https://doi.org/10.1016/S0040-6031(97)00199-8.
- Tsukada H., Asaki Z., Tanabe T., Kondo Y. Oxidation of mixed copper-iron sulfide // Metallurgical and Materials Transactions B. 1981. Vol. 12. P. 603–609. https://doi.org/10.1007/BF02654333.
- Arkhangelsky I.V., Dunaev A.V., Makarenko I.V., Tikhonov N.A., Belyaev S.S., Tarasov A.V. Non-isothermal kinetic methods. Workbook and laboratory manual. 2013.. URL: http://edition-open-access.de/media/textbooks/1/Textbooks1.pdf (23.08.2022).
- Chung Frank H. A new X-ray diffraction method for quantitative multicomponent analysis // Advances in X-Ray Analysis. 1973. Vol. 17. P. 106–115. https://doi.org/10.1154/S0376030800005231.
- Hubbard C.R., Evans E.H., Smith D.K. The reference intensity ratio, I/Ic, for computer simulated powder patterns // Journal of Applied Crystallography. 1976. Vol. 9. P. 169–174. https://doi.org/10.1107/S0021889876010807.
- Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD // Journal of Applied Crystallography. 2015. Vol. 48. P. 598–603. https://doi.org/10.1107/S1600576715002319.
- Arshad M.A., Maaroufi A.K. Recent advances in kinetics and mechanisms of condensed phase processes: a mini-review // Reviews on Advanced Materials Science. 2017. Vol. 51. P. 177–187.
- Vyazovkin S., Burnham A.K., Criado J.M., Perez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data // Thermochimica Acta. 2011. Vol. 520. Iss. 1-2. P. 1–19. https://doi.org/10.1016/j.tca.2011.03.034.
- Henderson D.W. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids // Journal of Non-Crystalline Solids. 1979. Vol. 30. Iss. 3. P. 301–315. https://doi.org/10.1016/0022-3093(79)90169-8.
- Kissinger H.E. Variation of peak temperature with heating rate in differential thermal analysis // Journal of Research of the National Institute of Standards and Technology. 1956. Vol. 57. Iss. 4. P. 217–221.
- Augis J.A., Bennett J.E. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method // Journal of Thermal Analysis. 1978. Vol. 13. P. 283–292. https://doi.org/10.1007/BF01912301.
- Pelovski Y.G., Petkova V. Mechanism and kinetics of inorganic sulphates decomposition // Journal of Thermal Analysis. 1997. Vol. 49. P. 1227–1441. https://doi.org/10.1007/BF01983679.
- Хорошавин А.Г. Форстерит 2MgO·SiO2. М.: Теплотехника, 2004. 368 с.
- Yamaguchi T., Shiraishi T. Kinetic studies of eutectoid decomposition of CuFe5O8 // Journal of the American Ceramic Society. 1971. Vol. 54. P. 556–558. https://doi.org/10.1111/j.1151-2916.1971.tb12206.x.
- Luo Yan-hong, Zhu De-qing, Pan Jian, Zhou Xianlin. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore // Mineral Processing and Extractive Metallurgy. 2016. Vol. 125. Iss. 1. P. 17–25. https://doi.org/10.1080/03719553.2015.1118213.
- Petkova V., Pelovski Y.G. Comparative DSC study on thermal decomposition of iron sulphates // Journal of Thermal Analysis and Calorimetry. 2008. Vol. 93. P. 847–852. https://doi.org/10.1007/S10973-008-9302-X.
- Petkova V., Pelovski Y.G., Paneva D., Mitov I. Influence of gas media on the thermal decomposition of second valence iron sulphates // Journal of Thermal Analysis and Calorimetry. 2011. Vol. 105. P. 793–803. https://doi.org/10.1007/S10973-010-1242-6.
- Choi Kyungsob, Kim Sookyung, Kim Minseuk, Park Hyunsik. Oxidation behavior of copper concentrate, gold concentrate, and their mixtures between 1173 K (900°C) and 1373 K (1100°C) // Metallurgical and Materials Transactions B. 2019. Vol. 50. P. 1300–1308. https://doi.org/10.1007/s11663-019-01575-3.
- Matusita K., Sakka S. Kinetic study of crystallization of glass by differential thermal analysis – criterion on application of Kissinger plot // Journal of Non-Crystalline Solids. 1980. Vol. 38-39. Part 2. P. 741–746. https://doi.org/10.1016/0022-3093(80)90525-6.
- Donald I.W. Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC // Journal of Non-Crystalline Solids. 2004. Vol. 345-346. P. 120–126. https://doi.org/10.1016/j.jnoncrysol.2004.08.007.
- Šesták J. Thermophysical properties of solids: their measurements and theoretical thermal analysis. Prague: Academia, 1984. 440 p.
- Bamford C.H., Tipper C.F.H. Reactions in the solid state. Amsterdam: Elsevier, 1980. 340 p.
Supplementary files


