Kinetics and mechanism of oxidizing roasting of sulfide copper-cobalt ore

Cover Page

Cite item

Full Text

Abstract

The aim of the study was to examine the chemistry, kinetics and mechanism of oxidizing roasting of a typical sample of sulfide copper-cobalt ore. The research object was sulfide copper-cobalt ore with the following main minerals: pyrite, pyrrhotite, chalcopyrite, sphalerite, tremolite, silicon dioxide, talc, siderite and calcite. The methodology involved high-temperature X-ray phase analysis (100–900°C), thermogravimetry, differential scanning calorimetry and mass spectrometry of the released gas (30–1100°C, heating rate – 5–20°C·min-1, air flow rate – 30 cm3·min-1). The chemistry, kinetics and mechanism of oxidizing roasting of sulfide copper-cobalt ore with a particle size of <0.1 mm were studied. It was found that the process can be represented as a set of seven elementary reactions: five exothermic reactions (at 398–445, 394–488, 440–498, 433–549 and 451–562°C), corresponding to the intense combustion of iron, copper and zinc sulfides, and two endothermic reactions (at 651–664 and 743–927°C), associated with the decomposition of residual copper and iron sulfates. Kinetic analysis (Kissinger and Augis-Bennett methods, identification of the reaction model by reference function and iterative optimization) of differential scanning calorimetry data in connection with the above reactions showed that the limiting stage of the latter is nucleation and crystal growth. The values of activation energy, pre-exponential factor and Avrami parameter ranged between 140–459 kJ·mol-1, 1.41·104–3.49·1031 with-1 and 1.0–1.7, respectively. It was established that crystallization of the products of elementary reactions is accompanied by an increase in the number of nuclei; new phase nuclei can be formed both on the surface and in the bulk of ore particles. The crystal growth is one-dimensional and is controlled by a chemical reaction at the interphase boundary or by diffusion of reagents. The results obtained can be applied in the practice of oxidizing roasting of sulfide ores and concentrates.

About the authors

A. M. Klyushnikov

Institute of Metallurgy of the Ural Branch of the RAS

Email: amk8@mail.ru
ORCID iD: 0000-0001-8239-3757

R. I. Gulyaeva

Institute of Metallurgy of the Ural Branch of the RAS

Email: gulroza@mail.ru
ORCID iD: 0000-0003-2860-0377

S. M. Pikalov

Institute of Metallurgy of the Ural Branch of the RAS

Email: s.pikalov@mail.ru
ORCID iD: 0000-0001-6292-0468

G. I. Maltsev

Institute of Metallurgy of the Ural Branch of the RAS

Email: maltsewg@yandex.ru
ORCID iD: 0000-0002-0750-0070

References

  1. Schlesinger M.E., King M.J., Sole K.C., Davenport W.G. Extractive metallurgy of copper. 5th Edition. Oxford: Elsevier, 2011.
  2. Мелекесцева И.Ю., Масленников В.В., Масленникова С.П. Элементы-примеси в сульфидах Дергамышского кобальт-медноколчеданного месторождения, Южный Урал: форма нахождения и источники вещества // Литосфера. 2020. Т. 20. № 4. С. 499–516. https://doi.org/10.24930/1681-9004-2020-20-4-499-516.
  3. Селиванов Е.Н., Гуляева Р.И., Клюшников А.М. Исследование структуры и фазового состава медно-кобальтовых сульфидных руд Дергамышского месторождения // Цветные металлы. 2016. № 3. С. 13–17. https://doi.org/10.17580/tsm.2016.03.02.
  4. Нагаева С.П., Мезенцева О.П., Козорез М.В. Минералогические исследования медных кобальтсодержащих руд Дергамышского месторождения // Горный журнал. 2014. № 11. С. 31–34.
  5. Cusano G., Gonzalo M.R., Farrell F., Remus R., Roudier S., Sancho L.D. Best available techniques (BAT) reference document for the main non-ferrous metals Industries. Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control). Joint Research Centre, 2017. Р. 902–910. https://doi.org/10.2760/8224.
  6. Резник И.Д., Соболь С.И., Худяков В.М. Кобальт: в 2 т. Т. 1. М.: Машиностроение, 1995. 440 с.
  7. Crundwell F.K., Moats M.S., Ramachandran V., Robinson T.G., Dawenport W.G. Extractive metallurgy of nickel, cobalt and platinum-group metals. Oxford: Elsevier, 2011. 622 р.
  8. Warner A.E.M., Diaz C.M., Dalvi A.D., Mackey P.J., Tarasov A.V., Jones R.T. World nonferrous smelter survey. Part IV: Nickel: Sulfide // JOM. 2007. Vol. 59. P. 58–72. https://doi.org/10.1007/s11837-007-0056-x.
  9. Selivanov E.N., Klyushnikov A.M., Gulyaeva R.I. Use of quartz-containing materials as fluxes in copper smelting production // Metallurgist. 2017. Vol. 61. Iss. 1-2. P. 155–161. https://doi.org/10.1007/s11015-017-0469-x.
  10. Selivanov E.N., Klyushnikov A.M., Gulyaeva R.I. Application of sulfide copper ores oxidizing roasting products as sulfidizing agent during melting nickel raw materials to matte // Metallurgist. 2019. Vol. 63. Iss. 7-8. P. 867–887. https://doi.org/10.1007/s11015–019–00901–z.
  11. Klyushnikov A.M., Gulyaeva R.I., Selivanov E.N., Pikalov S.M. Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings // International Journal of Minerals, Metallurgy and Materials. 2021. Vol. 28. Iss. 9. P. 1469–1477. https://doi.org/10.1007/s12613-020-2109-x.
  12. Klyushnikov A., Gulyaeva R., Pikalov S. Cold crystallization kinetics of slag from the joint smelting of oxidized nickel and sulfide copper ores // Journal of Thermal Analysis and Calorimetry. 2022. Vol. 147. P. 12165–12176. https://doi.org/10.1007/s10973-022-11429-x.
  13. Klyushnikov A.M. Modeling of exchange interactions in melts formed during joint smelting of oxidized nickel ores and pyrrhotite concentrates // Metallurgist. 2022. Vol. 66. Iss. 1-2. P. 190–199. https://doi.org/10.1007/s11015-022-01314-1.
  14. Božinović K., Štrbac N., Mitovski A., Sokić M., Minić D., Marković B., Stojanović J. Thermal decomposition and kinetics of pentlandite-bearing ore oxidation in the air atmosphere // Metals. 2021. Vol. 11. Iss. 9. P. 1364. https://doi.org/10.3390/met11091364.
  15. Смирнов В.И., Тихонов А.И. Обжиг медных руд и концентратов (теория и практика). М.: Металлургия, 1956. 255 с.
  16. Devia M., Wilkomirsky I., Parra R. Roasting kinetics of high-arsenic copper concentrates: a review // Mining, Metallurgy & Exploration. 2012. Vol. 29. Iss. 2. P. 121–128. https://doi.org/10.1007/BF03402403.
  17. Dimitrov R., Boyanov B. Investigation of the oxidation of metal sulphides and sulphide concentrates // Thermochimica Acta. 1983. Vol. 64. Iss. 1-2. P. 27–37. https://doi.org/10.1016/0040-6031(83)80125-7.
  18. Hua Yixin, Cai Chaojun, Cui Yan. Microwave-enhanced roasting of copper sulfide concentrate in the presence of CaCO3 // Separation and Purification Technology. 2006. Vol. 50. Iss. 1. P. 22–29. https://doi.org/10.1016/j.seppur.2005.11.003.
  19. Mitovski A., Strbac N., Mihajlovic I., Sokić M., Stojanović J. Thermodynamic and kinetic analysis of the polymetallic copper concentrate oxidation process // Journal of Thermal Analysis and Calorimetry. 2014. Vol. 118. P. 1277–1285. https://doi.org/10.1007/s10973-014-3838-8.
  20. Prasad S., Pandey B.D. Thermoanalytical studies on copper-iron sulphides // Journal of Thermal Analysis and Calorimetry. 1999. Vol. 58. P. 625–637. https://doi.org/10.1023/A:1010108729034.
  21. Prasad P.N., Lennartsson A., Samuelsson C. A mineralogical investigation of sintering in Cu-rich polymetallic concentrates during roasting in inert atmosphere // Metallurgical and Materials Transactions B. 2020. Vol. 51. P. 1446–1459. https://doi.org/10.1007/s11663-020-01850-8.
  22. Shamsuddin M., Sohn H.Y. Constitutive topics in physical chemistry of high-temperature nonferrous metallurgy – a review: Part 1. Sulfide roasting and smelting // JOM. 2019. Vol. 71. No. 9. P. 3253–3265. https://doi.org/10.1007/s11837-019-03620-7.
  23. Souza R., Queiroz C., Brant J., Brocchi E. Pyrometallurgical processing of a low copper content concentrate based on a thermodynamic assessment // Minerals Engineering. 2019. Vol. 130. P. 156–164. https://doi.org/10.1016/j.mineng.2018.10.015.
  24. Wan Xingbang, Shi Junjie, Taskinen P., Jokilaakso A. Extraction of copper from copper-bearing materials by sulfation roasting with SO2–O2 gas // JOM. 2020. Vol. 72. No. 10. P. 3436–3446. https://doi.org/10.1007/s11837-020-04300-7.
  25. Wilkomirsky I., Parra R., Parada F., Balladares E., Seguel E., Etcheverry J., Díaz R. Thermodynamic and kinetic mechanisms of bornite/chalcopyrite/magnetite formation during partial roasting of high-arsenic copper concentrates // Metallurgical and Materials Transactions B. 2020. Vol. 51. P. 1540–1551. https://doi.org/10.1007/s11663-020-01870-4.
  26. Yang Fu-qiang, Wu Chao, Cui Yan, Lu Guang. Apparent activation energy for spontaneous combustion of sulfide concentrates in storage yard // Transactions of Nonferrous Metals Society of China. 2011. Vol. 21. Iss. 2. P. 395–401. https://doi.org/10.1016/S1003-6326(11)60727-9.
  27. Živcović Ž.D., Mitevska N., Savović V. Kinetics and mechanism of the chalcopyrite-pyrite concentrate oxidation process // Thermochimica Acta. 1996. Vol. 282-283. P. 121–130. https://doi.org/10.1016/0040-6031(96)02883-3.
  28. Chen T.T., Dutrizac J.E. Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates // JOM. 2004. Vol. 56. P. 46–51. https://doi.org/10.1007/s11837-004-0235-y.
  29. Снурников А.П. Гидрометаллургия цинка. М.: Металлургия, 1981. 384 с.
  30. Dunn J.G., Jayaweera S.A.A. Effect of heating rate on the TG curve during the oxidation of nickel sulphide concentrates // Thermochimica Acta. 1983. Vol. 61. Iss. 3. P. 313–317.
  31. Yu Dawei, Utigard T.A. TG/DTA study on the oxidation of nickel concentrate // Thermochimica Acta. 2012. Vol. 533. P. 56–65. https://doi.org/10.1016/j.tca.2012.01.017.
  32. Thoumsin F.J., Coussement R. Fluid-bed roasting reactions of copper and cobalt sulfide concentrates // JOM. 1964. Vol. 16. P. 831–834. https://doi.org/10.1007/BF03378299.
  33. Hu Guilin, Dam-Johansen Kim, Wedel S., Hansen J.P. Decomposition and oxidation of pyrite // Progress in Energy and Combustion Science. 2006. Vol. 32. Iss. 3. P. 295–314. https://doi.org/10.1016/J.PECS.2005.11.004.
  34. Dunn J.G., Mackey L.C. The measurement of ignition temperatures and extents of reaction on iron and iron-nickel sulfides // Journal of Thermal Analysis. 1991. Vol. 37. P. 2143–2164. https://doi.org/10.1007/BF01905584.
  35. Luganov V.A., Shabalin V.I. Thermal dissociation of pyrite during processing of pyrite-containing raw materials // Canadian Metallurgical Quarterly. 1994. Vol. 33. Iss. 3. P. 169–174. http://dx.doi.org/10.1179/cmq.1994.33.3.169.
  36. Dunn J.G. The oxidation of sulphide minerals // Thermochimica Acta. 1997. Vol. 300. Iss. 1-2. P. 127–139. https://doi.org/10.1016/S0040-6031(96)03132-2.
  37. Eneroth E., Koch C.B. Crystallite size of haematite from thermal oxidation of pyrite and marcasite – effects of grain size and iron disulphide polymorph // Minerals Engineering. 2003. Vol. 16. Iss. 11. P. 1257–1267. https://doi.org/10.1016/j.mineng.2003.07.004.
  38. Ferrow E.A., Mannerstrand M., Sjöberg B. Reaction kinetics and oxidation mechanisms of the conversion of pyrite to ferrous sulphate: a Mössbauer spectroscopy study // Hyperfine Interactions. 2005. Vol. 163. P. 109–119. https://doi.org/10.1007/s10751-005-9200-6.
  39. Aylmore M.G., Lincoln F.J. Mechanochemical millinginduced reactions between gases and sulfide minerals. I. Reactions of SO2 with arsenopyrite, pyrrhotite and pyrite // Journal of Alloys and Compounds. 2000. Vol. 309. Iss. 1-2. P. 61–74. https://doi.org/10.1016/S0925-8388(00)00916-6.
  40. Vázquez M., Moreno-Ventas I., Raposo I., Palma A., Díaz M.J. Kinetic of pyrite thermal degradation under oxidative environment // Journal of Thermal Analysis and Calorimetry. 2020. Vol. 141. P. 1157–1163. https://doi.org/10.1007/s10973-019-09098-4.
  41. Ruan Shufeng, Wang Chengyan, Jie Xiaowu, Yin Fei, Zhang Yonglu, Yao Zhichao, et al. Kinetics of pyrite multistep thermal decomposition in refractory gold sulphide concentrates // Journal of Thermal Analysis and Calorimetry. 2022. Vol. 147. P. 3689–3702. https://doi.org/10.1007/s10973-021-10761-y.
  42. Wang Luyi, Fan B.W., He Y.T., Li P., Yin D.Q., Hu Y.H. Characteristics of minerals and their associations of transformation processes in pyrite at elevated temperatures: an X-ray diffraction study // Ironmaking Steelmaking. 2014. Vol. 41. Iss. 2. P. 147–152. https://doi.org/10.1179/1743281213Y.0000000113.
  43. Xu Hongwu, Guo Xiaofeng, Seaman L.A., Harrison A.J., Obrey S.J., Page K. Thermal desulfurization of pyrite: an in situ high-T neutron diffraction and DTA–TGA study // Journal of Materials Research. 2019. Vol. 34. P. 3243–3253. https://doi.org/10.1557/jmr.2019.185.
  44. Zhang Yan, Li Qian, Liu Xiaoliang, Xu Bin, Yang Yongbin, Jiang Tao. A thermodynamic analysis on the roasting of pyrite // Minerals. 2019. Vol. 9. Iss. 4. Р. 220. https://doi.org/10.3390/min9040220.
  45. Jorgensen F.R.A., Moyle F.J. Phases formed during the thermal analysis of pyrite in air // Journal of Thermal Analysis. 1982. Vol. 25. P. 473–485. https://doi.org/10.1007/BF01912973.
  46. Aracena Á., Jerez Ó., Ortíz R., Morales J. Pyrite oxidation kinetics in an oxygen-nitrogen atmosphere at temperatures from 400 to 500°C // Canadian Metallurgical Quarterly. 2016. Vol. 55. Iss. 2. P. 195–201. http://doi.org/10.1080/00084433.2015.1126904.
  47. Reimers G.W., Hjelmstad K.E. Analysis of the oxidation of chalcopyrite, chalcocite, galena, pyrrhotite, marcasite, and arsenopyrite // Department of the Interior, Bureau of Mines. Report of investigations 9118 (United States. Bureau of Mines). Pittsburgh, 1987.
  48. Malek T.J., Chaki S.H., Deshpande M.P. Structural, morphological, optical, thermal and magnetic study of mackinawite FeS nanoparticles synthesized by wet chemical reduction technique // Physica B: Condensed Matter. 2018. Vol. 546. P. 59–66. https://doi.org/10.1016/j.physb.2018.07.024.
  49. Asaki Z., Matsutomo T., Tanabe T., Condo Y. Oxidation of dense iron sulfide // Metallurgical and Materials Transactions B. 1983. Vol. 14. P. 109–116. https://doi.org/10.1007/BF02670877.
  50. Kennedy T., Sturman B.T. The oxidation of iron (II) sulfide // Journal of Thermal Analysis. 1975. Vol. 8. P. 329–337. https://doi.org/10.1007/BF01904010.
  51. Asaki Z., Condo Y. Oxidation kinetics of iron sulfide in the form of dense plate, pellet and single particle // Journal of Thermal Analysis. 1989. Vol. 35. P. 1751–1759. https://doi.org/10.1007/BF01911664.
  52. Coombs P.G., Munir Z.A. The mechanism of oxidation of ferrous sulfide (FeS) powders in the range of 648 to 923 K // Metallurgical and Materials Transactions B. 1989. Vol. 20. P. 661–670. https://doi.org/10.1007/BF02655922.
  53. Gulyaeva R.I., Selivanov E.N., Vershinin A.D. Nonisothermal oxidation of pyrrhotines // Russian Metallurgy (Metally). 2003. Vol. 4. P. 299–304.
  54. Alksnis A., Li B., Elliott R., Barati M. Kinetics of oxidation of pyrrhotite // The Minerals, Metals & Materials Series / eds. B. Davis. Cham: Springer, 2018. Р. 403–413. https://doi.org/10.1007/978–3–319–95022–8_32.
  55. Habashi F., Dugdale R. The action of sulfur trioxide on chalcopyrite // Metallurgical and Materials Transactions B. 1973. Vol. 4. P. 1553–1556. https://doi.org/10.1007/BF02668007.
  56. Leung L.S. The overall kinetics of roasting of chalcopyrite // Metallurgical and Materials Transactions B. 1975. Vol. 6. P. 341–343. https://doi.org/10.1007/BF02913578.
  57. Aneesuddin M., Char P.N., Hussain M.R., Saxena E.R. Studies on thermal oxidation of chalcopyrite from Chitradurga, Karnataka State, India // Journal of Thermal Analysis. 1983. Vol. 26. P. 205–215. https://doi.org/10.1007/BF01913204.
  58. Chaubal P.C., Sohn H.Y. Intrinsic kinetics of the oxidation of chalcopyrite particles under isothermal and nonisothermal conditions // Metallurgical and Materials Transactions B. 1986. Vol. 17. P. 51–60. https://doi.org/10.1007/BF02670818.
  59. Cocić M.B., Logar M.M., Cocić S.Lj., Dević S.S., Manasijević D.M. Transformation of chalcopyrite in the roasting process of copper concentrate in fluidized bed reactor // JOM. 2011. Vol. 63. P. 55–59. https://doi.org/10.1007/s11837-011-0078-2.
  60. Živcović Ž., Štrbać N., Živcović D., Velinovski V., Mihajlović I. Kinetic study and mechanism of chalcocite and covellite oxidation process // Journal of Thermal Analysis and Calorimetry. 2005. Vol. 79. P. 715–720. https://doi.org/10.1007/s10973-005-0601-1.
  61. Ramakrishna Rao V.V.V.N.S., Abraham K.P. Kinetics of oxidation of copper sulfide // Metallurgical and Materials Transactions B. 1971. Vol. 2. P. 2463–2470. https://doi.org/10.1007/BF02814883.
  62. Dunn J.G., Ginting A.R., O’Connor B. A thermoanalytical study of the oxidation of chalcocite // Journal of Thermal Analysis. 1994. Vol. 41. P. 671–686. https://doi.org/10.1007/BF02549341.
  63. Benlyamani M., Ajersch F. Agglomeration of particles during roasting of zinc sulfide concentrates // Metallurgical and Materials Transactions B. 1986. Vol. 17. P. 647–656. https://doi.org/10.1007/BF02657127.
  64. Dimitrov R., Bonev I. Mechanism of zinc sulphide oxidation // Thermochimica Acta. 1986. Vol. 106. P. 9–25. https://doi.org/10.1016/0040-6031(86)85111-5.
  65. Dimitrov R.I., Boyanov B.S. Oxidation of metal sulphides and determination of characteristic temperatures by DTA and TG // Journal of Thermal Analysis and Calorimetry. 2000. Vol. 61. P. 181–189. https://doi.org/10.1023/A:1010181112713.
  66. Graydon J.W., Kirk D.W. A Microscopic study of the transformation of sphalerite particles during the roasting of zinc concentrate // Metallurgical and Materials Transactions B. 1988. Vol. 19. P. 141–146. https://doi.org/10.1007/BF02666500.
  67. Gulyaeva R.I., Selivanov E.N., Pikalov S.M. Mechanism and kinetics of the thermal oxidation of natural sphalerite // Russian Metallurgy (Metally). 2018. Vol. 3. P. 221–227. https://doi.org/10.1134/S0036029518030047.
  68. Natesan K., Philbrook W.O. Oxidation kinetic studies of zinc sulfide in a fluidized bed reactor // Metallurgical and Materials Transactions B. 1970. Vol. 1. P. 1353–1360. https://doi.org/10.1007/BF02900254.
  69. Marzoughi O., Halali M., Moradkhani D., Pickle C.A. Kinetics of roasting of a sphalerite concentrate // The Minerals, Metals & Materials Series / eds. B. Davis. Extraction 2018. The Minerals, Metals & Materials Series. Cham: Springer, 2018. Р. 559–571. https://doi.org/10.1007/978-3-319-95022-8_44.
  70. Asaki Z., Nitta M., Tanabe T., Condo Y. Oxidation of cobalt sulfide // Metallurgical and Materials Transactions B. 1986. Vol. 17. P. 367–373. https://doi.org/10.1007/BF02655084.
  71. Boyanov B.S. Differential thermal study of the interactions between sulphates, oxides and ferrites // Thermochimica Acta. 1997. Vol. 302. Iss. 1-2. P. 109–115. https://doi.org/10.1016/S0040-6031(97)00199-8.
  72. Tsukada H., Asaki Z., Tanabe T., Kondo Y. Oxidation of mixed copper-iron sulfide // Metallurgical and Materials Transactions B. 1981. Vol. 12. P. 603–609. https://doi.org/10.1007/BF02654333.
  73. Arkhangelsky I.V., Dunaev A.V., Makarenko I.V., Tikhonov N.A., Belyaev S.S., Tarasov A.V. Non-isothermal kinetic methods. Workbook and laboratory manual. 2013.. URL: http://edition-open-access.de/media/textbooks/1/Textbooks1.pdf (23.08.2022).
  74. Chung Frank H. A new X-ray diffraction method for quantitative multicomponent analysis // Advances in X-Ray Analysis. 1973. Vol. 17. P. 106–115. https://doi.org/10.1154/S0376030800005231.
  75. Hubbard C.R., Evans E.H., Smith D.K. The reference intensity ratio, I/Ic, for computer simulated powder patterns // Journal of Applied Crystallography. 1976. Vol. 9. P. 169–174. https://doi.org/10.1107/S0021889876010807.
  76. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD // Journal of Applied Crystallography. 2015. Vol. 48. P. 598–603. https://doi.org/10.1107/S1600576715002319.
  77. Arshad M.A., Maaroufi A.K. Recent advances in kinetics and mechanisms of condensed phase processes: a mini-review // Reviews on Advanced Materials Science. 2017. Vol. 51. P. 177–187.
  78. Vyazovkin S., Burnham A.K., Criado J.M., Perez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data // Thermochimica Acta. 2011. Vol. 520. Iss. 1-2. P. 1–19. https://doi.org/10.1016/j.tca.2011.03.034.
  79. Henderson D.W. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids // Journal of Non-Crystalline Solids. 1979. Vol. 30. Iss. 3. P. 301–315. https://doi.org/10.1016/0022-3093(79)90169-8.
  80. Kissinger H.E. Variation of peak temperature with heating rate in differential thermal analysis // Journal of Research of the National Institute of Standards and Technology. 1956. Vol. 57. Iss. 4. P. 217–221.
  81. Augis J.A., Bennett J.E. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method // Journal of Thermal Analysis. 1978. Vol. 13. P. 283–292. https://doi.org/10.1007/BF01912301.
  82. Pelovski Y.G., Petkova V. Mechanism and kinetics of inorganic sulphates decomposition // Journal of Thermal Analysis. 1997. Vol. 49. P. 1227–1441. https://doi.org/10.1007/BF01983679.
  83. Хорошавин А.Г. Форстерит 2MgO·SiO2. М.: Теплотехника, 2004. 368 с.
  84. Yamaguchi T., Shiraishi T. Kinetic studies of eutectoid decomposition of CuFe5O8 // Journal of the American Ceramic Society. 1971. Vol. 54. P. 556–558. https://doi.org/10.1111/j.1151-2916.1971.tb12206.x.
  85. Luo Yan-hong, Zhu De-qing, Pan Jian, Zhou Xianlin. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore // Mineral Processing and Extractive Metallurgy. 2016. Vol. 125. Iss. 1. P. 17–25. https://doi.org/10.1080/03719553.2015.1118213.
  86. Petkova V., Pelovski Y.G. Comparative DSC study on thermal decomposition of iron sulphates // Journal of Thermal Analysis and Calorimetry. 2008. Vol. 93. P. 847–852. https://doi.org/10.1007/S10973-008-9302-X.
  87. Petkova V., Pelovski Y.G., Paneva D., Mitov I. Influence of gas media on the thermal decomposition of second valence iron sulphates // Journal of Thermal Analysis and Calorimetry. 2011. Vol. 105. P. 793–803. https://doi.org/10.1007/S10973-010-1242-6.
  88. Choi Kyungsob, Kim Sookyung, Kim Minseuk, Park Hyunsik. Oxidation behavior of copper concentrate, gold concentrate, and their mixtures between 1173 K (900°C) and 1373 K (1100°C) // Metallurgical and Materials Transactions B. 2019. Vol. 50. P. 1300–1308. https://doi.org/10.1007/s11663-019-01575-3.
  89. Matusita K., Sakka S. Kinetic study of crystallization of glass by differential thermal analysis – criterion on application of Kissinger plot // Journal of Non-Crystalline Solids. 1980. Vol. 38-39. Part 2. P. 741–746. https://doi.org/10.1016/0022-3093(80)90525-6.
  90. Donald I.W. Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC // Journal of Non-Crystalline Solids. 2004. Vol. 345-346. P. 120–126. https://doi.org/10.1016/j.jnoncrysol.2004.08.007.
  91. Šesták J. Thermophysical properties of solids: their measurements and theoretical thermal analysis. Prague: Academia, 1984. 440 p.
  92. Bamford C.H., Tipper C.F.H. Reactions in the solid state. Amsterdam: Elsevier, 1980. 340 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).