Intelligent decision-making support system for the commissioning of a small hydroelectric power plant in the Republic of Tyva

Cover Page

Cite item

Full Text

Abstract

This paper investigates the cutting forces arising when using a single abrasive grain. Analytical studies were carried out using a model of a single abrasive grain in the form of a rod with a radiused apex acting on the workpiece material. The slip-line method (method of characteristics) was used to calculate the deformation intensity of a plastically edged workpiece material under the action of a single grain. Mathematical models were developed for the following factors: plastic deformation of the material, edging of the stagnated zone and its friction against the grain surface when moved upwards in the form of chippings, grain friction against the plastically deformed material, and the action of the dynamic component of plastic deformation. The significance of the dynamic component in the overall balance of forces related to plastic deformation was established by determining the ratio of dynamic stress on the break line and shear yield point. This dependence calculated for D16T and 30HGSA materials showed the feasibility of accounting for the dynamic component system based on a small hydropower station located in the Todzhinsky district of the Republic of Tyva. For an adequate assessment of the operational reliability of hydropower units, a logical and probabilistic method based on the kinetic theory of fault tree was used. The method allows the failures of the used equipment, as well as unplanned shutdowns of units due to a shortage of water resources in the Great Yenisey (low water, overdrying, and frozen frost), to be taken into account. The development of a generation system based on a small hydroelectric power plant for the settlements in the Todzhinsky district of the Republic of Tyva offers a load of up to 2,500 kW, which helps to reduce the cost of purchasing, delivering, and storing diesel fuel, while diesel generators can be used as backup power sources. 3 scenarios of structuring a small hydroelectric power plant were considered that involved various numbers and total capacity of hydrogenating units: 5x500 kW, 4x630 kW, and 3x800 kW. Therefore, by using the multi-criteria optimization method, the optimal structure of the generating system based on a small hydroelectric power plant having three hydroelectric units (each characterized by a capacity of 800 kW) was selected from the three proposed options, taking into account the reliability and uncertainty of the initial information.

About the authors

T. V. Krivenko

Siberian Federal University

Email: tkrivenko@sfu-kras.ru
ORCID iD: 0000-0001-9458-047X

V. A. Tremyasov

Siberian Federal University

Email: emf_tva@mail.ru
ORCID iD: 0000-0001-8629-9549

K. V. Kenden

Tuvan State University

Email: kuca08@mail.ru
ORCID iD: 0000-0002-0975-3303

V. E. Kozhemyakin

Siberian Federal University

Email: slava-kozhemyakin@mail.ru

References

  1. Долгов П.П., Щавелев Д.С. Многокритериальные задачи в гидроэнергетике и водном хозяйстве // Труды ЛПИ им. М.И. Калинина. 1981. № 375. С. 9–12.
  2. Котельников В.И., Чупикова С.А. Расчет гидроэнергетического потенциала рек на территории Тывы с помощью ГИС // Международный журнал экспериментального образования. 2015. № 3-3. С. 455–459.
  3. Kovalenko I.V. Tremyasov V.A., Belov V.G. Intelligent control support for reconstruction of electrical circuits of station and substations // Journal of Physics: Conference Series. 2021. Vol. 1889. Iss 4. P. 042048. https://doi.org/10.1088/1742-6596/1889/4/042048.
  4. Тремясов В.А., Григорьева О.А., Кенден К.В. Многокритериальный подход к выбору площадок для размещения солнечно-дизельных систем генерации // iPolytech Journal. 2021. Т. 25. № 5. С. 601–610. https://doi.org/10.21285/1814-3520-2021-5-601-610.
  5. Азгальдов Г.Г., Райхман Э.П. О квалиметрии. М.: Изд-во стандартов, 1973. 282 с.
  6. Ismibayli R., Guliyeva P., Ahmadli N. On the construction of membership functions for fuzzy sets associated with // RT&A. 2022. Vol. 17. Iss. 4. P. 367–371.
  7. Тремясов В.А, Кенден К.В., Кривенко Т.В. Оценка надежности системы генерации малых ГЭС в изолированных энергосистемах // Энергетика: управление, качество и эффективность использования энергоресурсов: сб. тр. IIIV междунар. науч.-техн. конф. (г. Благовещенск, 27 мая 2015 г. – 29 мая 2012 г.). Благовещенск: АмГУ, 2015. С. 143–147. EDN: VAILDL.
  8. Majeed A.R., Sadiq N.M. Availability & Reliability Evaluation of Dokan Hydro Power Station // IEEE/PES Transmission & Distribution Conference and Exposition: Latin America. 2006. http://doi.org/10.1109/TDCLA.2006.311494.
  9. Sapkota D., Bajracharya T.R., Luintel M.C. Reliability and availability evaluation of Sunkoshi hydro power station // Proceedings of IOE graduate Conference. 2014. Vol. 2. P. 197–202.
  10. Sharma R., Bhattrai N. Reliability based maintenance in hydropower: a case study of Bijaypur-i small hydropower plant // Journal of innovations in engineering education. 2020. Vol. 3. Iss. 1. P. 123–130. http://doi.org/10.3126/jiee.v3i1.34333.
  11. Ale T.О., Olufeagba B.J., Oyeleye M.O. A Markov model of generator performance at the Kainji hydro-power station in Nigeria // International Journal of Electrical and Computer Engineering. 2023. Vol. 13. Iss. 4. P. 3585–3592. http://doi.org/10.11591/ijece.v13i4.pp3585-3592.
  12. Кенден К.В. Оценка надежности системы генерации малых ГЭС на примере Тоджинского района // Вестник Тувинского государственного университета. Технические и физико-математические науки. 2020. № 2. С. 31–40. https://doi.org/10.24411/2221-0458-2020-10032. EDN: UCAJIC.
  13. Тремясов В.А., Кривенко Т.В. Анализ надежности автономного гибридного энергокомплекса на основе возобновляемых источников энергии // Электрооборудование: эксплуатация и ремонт. 2017. № 1. С. 43–51.
  14. Huang Chin-Yu, Chang Yung-Ruei. An improved decomposition scheme for assessing the reliability of embedded systems by using dynamic fault trees // Reliability Engineering & System Safety. 2007. Vol. 92. Iss. 10. P. 1403–1412. https://doi.org/10.1016/j.ress.2006.09.008.
  15. Amari S., Dill G., Howald E. A new approach to solve dynamic fault trees // Annual Reliability and Maintainability Symposium (Tampa, 27–30 January 2003). Tampa: IEEE, 2003. P. 374–379.
  16. Bobbio A., Portinale L., Minichino M., Ciancamerla E. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks // Reliability Engineering & System Safety. 2001. Vol. 71. Iss. 3. P. 249–260. http://doi.org/10.1016/S0951-8320(00)00077-6.
  17. Rao K.D., Gopika V., Rao V.V.S.S., Kushwaha H.S., Verma A.K., Srividya A. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment // Reliability Engineering & System Safety. 2009. Vol. 94. Iss. 4. P. 872–883. http://doi.org/10.1016/j.ress.2008.09.007.
  18. Эндрени Дж. Моделирование при расчетах надежности в электроэнергетических системах / пер. с англ.; ред. Ю.Н. Руденко. М.: Энергоатомиздат, 1983. 336 с.
  19. Тремясов В.А., Кенден К.В. Фотоэлектрические и гидроэнергетические установки в системах автономного электроснабжения: монография. Красноярск: Сиб. федер. ун-т, 2017. 208 с.
  20. Бляшко Я.И. Опыт МНТО «ИНСЭТ» по созданию и эксплуатации оборудования для микро- и МГЭС // Малая энергетика. 2004. № 1. С. 28‒33.
  21. Черников С.Н. Метод свертывания систем линейных неравенств // Успехи математических наук. 1964. Т. 19. № 5. С. 149–156.
  22. Aida-Zade K.R., Guliyeva P.S., Ismibayli R.E. Analysis of the methods for constructing membership functions using expert data // Recent Developments and the New Directions of Research, Foundations, and Applications. Studies in Fuzziness and Soft Computing / eds. S.N. Shahbazova, A.M. Abbasov, V. Kreinovich, J. Kacprzyk, I.Z. Batyrshin. Cham: Springer, 2023. Vol 422. Р. 361–365. https://doi.org/10.1007/978-3-031-20153-0_29.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).