Инфекционные осложнения у больных хроническим лимфолейкозом при лечении ингибиторами тирозинкиназы брутона
- Авторы: Торшина Ю.С.1, Серебряная Н.Б.1,2
-
Учреждения:
- Институт экспериментальной медицины
- Северо-Западный государственный медицинский университет им. И.И. Мечникова
- Выпуск: Том 21, № 3 (2021)
- Страницы: 15-27
- Раздел: Аналитические обзоры
- URL: https://medbiosci.ru/MAJ/article/view/76060
- DOI: https://doi.org/10.17816/MAJ76060
- ID: 76060
Цитировать
Аннотация
Цель — обобщить данные научной литературы о частоте и особенностях инфекционных осложнений, развивающихся при лечении больных лимфопролиферативными заболеваниями новым классом препаратов — селективными ингибиторами тирозинкиназы Брутона. Показаны участие тирозинкиназы Брутона в образовании и активации В-клеток и роль хронической активации В-лимфоцитов при развитии хронического лимфолейкоза. Определены условия, при которых назначение указанных препаратов имеет преимущества перед ранее примененными схемами терапии, так как чаще позволяет добиваться полной или частичной ремиссии. Рассмотрены основные характеристики ингибиторов тирозинкиназы Брутона, используемых в клинической практике, и осложнения, вызванные, как предполагают, нарушениями активности нецелевых тирозинкиназ. Описаны основные типы выявленных инфекционных осложнений, развивающихся при приеме препаратов указанной группы, временные особенности их появления и характерные возбудители.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Юлия Сергеевна Торшина
Институт экспериментальной медицины
Email: torshina.doc18@yandex.ru
ORCID iD: 0000-0002-2387-2712
SPIN-код: 1676-5162
аспирант отдела иммунологии
Россия, Санкт-ПетербургНаталья Борисовна Серебряная
Институт экспериментальной медицины; Северо-Западный государственный медицинский университет им. И.И. Мечникова
Автор, ответственный за переписку.
Email: nbvma@mail.ru
ORCID iD: 0000-0002-2418-9368
SPIN-код: 2240-1277
ResearcherId: G-1663-2015
д-р мед. наук, профессор, зав. лабораторией общей иммунологии, отдел иммунологии, профессор кафедры клинической микологии, аллергологии и иммунологии
Россия, Санкт-ПетербургСписок литературы
- Ammann E.M., Shanafelt T.D., Wright K.B. et al. Updating survival estimates in patients with chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) based on treatment-free interval length // Leuk. Lymphoma. 2018. Vol. 59, No. 3. P. 643–649. doi: 10.1080/10428194.2017.1349905
- Morton L.M., Wang S.S., Devesa S.S. et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001 // Blood. 2006. Vol. 107, No. 1. P. 265–276. doi: 10.1182/blood-2005-06-2508
- Watson L., Wyld P., Catovsky D. Disease burden of chronic lymphocytic leukaemia within the European Union // Eur. J. Haematol. 2008. Vol. 81, No. 4. P. 253–258. doi: 10.1111/j.1600-0609.2008.01114.x
- Jemal A., Siegel R., Ward E. et al. Cancer statistics, 2007 // CA Cancer J. Clin. 2007. Vol. 57, No. 1. P. 43–66. doi: 10.3322/canjclin.57.1.43
- Dores G.M., Anderson W.F., Curtis R.E. et al. Chronic lymphocytic leukaemia and small lymphocytic lymphoma: Overview of the descriptive epidemiology // Br. J. Haematol. 2007. Vol. 139, No. 5. P. 809–819. doi: 10.1111/j.1365-2141.2007.06856.x
- Злокачественные новообразования в России в 2017 году (заболеваемость и смертность) / под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. Москва, 2018.
- Клинические рекомендации «Хронический лимфолейкоз, лимфома из малых лимфоцитов» [Электронный ресурс] // Российское общество онкогематологов. Режим доступа: https://legalacts.ru/doc/klinicheskie-rekomendatsii-khronicheskii-limfoleikoz-limfoma-iz-malykh-limfotsitov-utv/. Дата обращения: 22.08.2021.
- Kil L.P., Yuvaraj S., Langerak A.W., Hendriks R.W. The role of B cell receptor stimulation in CLL pathogenesis // Curr. Pharm. Des. 2012. Vol. 18, No. 23. P. 3335–3355. doi: 10.2174/138161212801227041
- Zenz T., Eichhorst B., Busch R. et al. TP53 mutation and survival in chronic lymphocytic leukemia // J. Clin. Oncol. 2010. Vol. 28, No. 29. P. 4473–4479. doi: 10.1200/JCO.2009.27.8762
- Gonzalez D., Martinez P., Wade R. et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial // J. Clin. Oncol. 2011. Vol. 29, No. 16. P. 2223–2229. doi: 10.1200/JCO.2010.32.0838
- Malcikova J., Smardova J., Rocnova L. et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage // Blood. 2009. Vol. 114, No. 26. P. 5307–5314. doi: 10.1182/blood-2009-07-234708
- Zenz T., Krober A., Scherer K. et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up // Blood. 2008. Vol. 112, No. 8. P. 3322–3329. doi: 10.1182/blood-2008-04-154070
- Robak P., Robak T. Novel synthetic drugs currently in clinical development for chronic lymphocytic leukemia // Expert. Opin. Investig. Drugs. 2017. Vol. 26, No. 11. P. 1249–1265. doi: 10.1080/13543784.2017.1384814
- Chiorazzi N., Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities // Blood. 2011. Vol. 117, No. 6. P. 1781–1791. doi: 10.1182/blood-2010-07-155663
- Klein U., Tu Y., Stolovitzky G.A. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells // J. Exp. Med. 2001. Vol. 194, No. 11. P. 1625–1638. doi: 10.1084/jem.194.11.1625
- Seifert M., Sellmann L., Bloehdorn J. et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia // J. Exp. Med. 2012. Vol. 209, No. 12. P. 2183–2198. doi: 10.1084/jem.20120833
- Griffin D.O., Holodick N.E., Rothstein T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70– // J. Exp. Med. 2011. Vol. 208, No. 1. P. 67–80. doi: 10.1084/jem.20101499
- DiLillo D.J., Weinberg J.B., Yoshizaki A. et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function // Leukemia. 2013. Vol. 27, No. 1. P. 170–182. doi: 10.1038/leu.2012.165
- Muggen A.F., Singh S.P., Hendriks R.W., Langerak A.W. Targeting signaling pathways in chronic lymphocytic leukemia // Curr. Cancer Drug Targets. 2016. Vol. 16, No. 8. P. 669–688. doi: 10.2174/1568009616666160408145623
- Agathangelidis A., Darzentas N., Hadzidimitriou A. et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies // Blood. 2012. Vol. 119, No. 19. P. 4467–4475. doi: 10.1182/blood-2011-11-393694
- Murray F., Darzentas N., Hadzidimitriou A. et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis // Blood. 2008. Vol. 111, No. 3. P. 1524–1533. doi: 10.1182/blood-2007-07-099564
- Hayakawa K., Formica A.M., Colombo M.J. et al. Loss of a chromosomal region with synteny to human 13q14 occurs in mouse chronic lymphocytic leukemia that originates from early-generated B-1 B cells // Leukemia. 2016. Vol. 30, No. 7. P. 1510–1519. doi: 10.1038/leu.2016.61
- Chen S.S., Batliwalla F., Holodick N.E. et al. Autoantigen can promote progression to a more aggressive TCL1 leukemia by selecting variants with enhanced B-cell receptor signaling // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, No. 16. P. E1500–1507. doi: 10.1073/pnas.1300616110
- Singh S.P., Pillai S.Y., de Bruijn M.J.W. et al. Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signaling // Oncotarget. 2017. Vol. 8, No. 42. P. 71981–71995. doi: 10.18632/oncotarget.18234
- Messmer B.T., Albesiano E., Efremov D.G. et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia // J. Exp. Med. 2004. Vol. 200, No. 4. P. 519–525. doi: 10.1084/jem.20040544
- Herve M., Xu K., Ng Y.S. et al. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity // J. Clin. Invest. 2005. Vol. 115, No. 6. P. 1636–1643. doi: 10.1172/JCI24387
- Lanemo Myhrinder A., Hellqvist E., Sidorova E. et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies // Blood. 2008. Vol. 111, No. 7. P. 3838–3348. doi: 10.1182/blood-2007-11-125450
- Hoogeboom R., van Kessel K.P., Hochstenbach F. et al. A mutated B cell chronic lymphocytic leukemia subset that recognizes and responds to fungi // J. Exp. Med. 2013. Vol. 210, No. 1. P. 59–70. doi: 10.1084/jem.20121801
- Duhren-von Minden M., Ubelhart R., Schneider D. et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signaling // Nature. 2012. Vol. 489, No. 7415. P. 309–312. doi: 10.1038/nature11309
- Minici C., Gounari M., Ubelhart R. et al. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia // Nat. Commun. 2017. No. 8. P. 15746. doi: 10.1038/ncomms15746
- Herman S.E., Gordon A.L., Hertlein E. et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765 // Blood. 2011. Vol. 117, No. 23. P. 6287–6296. doi: 10.1182/blood-2011-01-328484
- Ponader S., Chen S.S., Buggy J.J. et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo // Blood. 2012. Vol. 119, No. 5. P. 1182–1189. doi: 10.1182/blood-2011-10-386417
- Kil L.P., de Bruijn M.J., van Hulst J.A. et al. Bruton’s tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia // Am. J. Blood Res. 2013. Vol. 3, No. 1. P. 71–83.
- de Rooij M.F., Kuil A., Geest C.R. et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia // Blood. 2012. Vol. 119, No. 11. P. 2590–2594. doi: 10.1182/blood-2011-11-390989
- Pal Singh S., Dammeijer F., Hendriks R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies // Mol. Cancer. 2018. Vol. 17, No. 1. P. 57. doi: 10.1186/s12943-018-0779-z
- Byrd J.C., Harrington B., O’Brien S. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia // N. Engl. J. Med. 2016. Vol. 374, No. 4. P. 323–332. doi: 10.1056/NEJMoa1509981
- Honigberg L.A., Smith A.M., Sirisawad M. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 29. P. 13075–13080. doi: 10.1073/pnas.1004594107
- Gordon M.J., Danilov A.V. The evolving role of Bruton’s tyrosine kinase inhibitors in chronic lymphocytic leukemia // Ther. Adv. Hematol. 2021. No. 12. P. 2040620721989588. doi: 10.1177/2040620721989588
- Herman S.E.M., Montraveta A., Niemann C.U. et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia // Clin. Cancer Res. 2017. Vol. 23, No. 11. P. 2831–2841. doi: 10.1158/1078-0432.CCR-16-0463
- O’Brien S., Furman R.R., Coutre S.E. et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: An open-label, multicentre, phase 1b/2 trial // Lancet Oncol. 2014. Vol. 15, No. 1. P. 48–58. doi: 10.1016/S1470-2045(13)70513-8
- Byrd J.C., Furman R.R., Coutre S.E. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia // N. Engl. J. Med. 2013. Vol. 369, No. 1. P. 32–42. doi: 10.1056/NEJMoa1215637
- Lipsky A.H., Farooqui M.Z., Tian X. et al. Incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib // Haematologica. 2015. Vol. 100, No. 12. P. 1571–1578. doi: 10.3324/haematol.2015.126672
- Kamel S., Horton L., Ysebaert L. et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation // Leukemia. 2015. Vol. 29, No. 4. P. 783–787. doi: 10.1038/leu.2014.247
- McMullen J.R., Boey E.J., Ooi J.Y. et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling // Blood. 2014. Vol. 124, No. 25. P. 3829–3830. doi: 10.1182/blood-2014-10-604272
- Rogers K.A., Ruppert A.S., Bingman A. et al. Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia // Leukemia. 2016. Vol. 30, No. 2. P. 346–350. doi: 10.1038/leu.2015.273
- Woyach J.A., Furman R.R., Liu T.M. et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib // N. Engl. J. Med. 2014. Vol. 370, No. 24. P. 2286–2294. doi: 10.1056/NEJMoa1400029
- Furman R.R., Cheng S., Lu P. et al. Ibrutinib resistance in chronic lymphocytic leukemia // N. Engl. J. Med. 2014. Vol. 370, No. 24. P. 2352–2354. doi: 10.1056/NEJMc1402716
- Kadri S., Lee J., Fitzpatrick C. et al. Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL // Blood Adv. 2017. Vol. 1, No. 12. P. 715–727. doi: 10.1182/bloodadvances.2016003632
- Krysiak K., Gomez F., White B.S. et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma // Blood. 2017. Vol. 129, No. 4. P. 473–483. doi: 10.1182/blood-2016-07-729954
- Mato A.R., Nabhan C., Thompson M.C. et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: a real-world analysis // Haematologica. 2018. Vol. 103, No. 5. P. 874–879. doi: 10.3324/haematol.2017.182907
- Pleyer C., Sun C., Desai S. et al. Reconstitution of humoral immunity and decreased risk of infections in patients with chronic lymphocytic leukemia treated with Bruton tyrosine kinase inhibitors // Leuk. Lymphoma. 2020. Vol. 61, No. 10. P. 2375–2382. doi: 10.1080/10428194.2020.1772477
- Tillman B.F., Pauff J.M., Satyanarayana G. et al. Systematic review of infectious events with the BTK inhibitor ibrutinib in the treatment of haematologic malignancies // Eur. J. Haematol. 2018. Vol. 100, No. 4. P. 325–334. doi: 10.1111/ejh.13020
- Byrd J.C., Brown J.R., O’Brien S. et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia // N. Engl. J. Med. 2014. Vol. 371, No. 3. P. 213–223. doi: 10.1056/NEJMoa1400376
- Barr P.M., Robak T., Owen C. et al. Sustained efficacy and detailed clinical follow-up of first-line ibrutinib treatment in older patients with chronic lymphocytic leukemia: extended phase 3 results from RESONATE-2 // Haematologica. 2018. Vol. 103, No. 9. P. 1502–1510. doi: 10.3324/haematol.2018.192328
- O’Brien S., Hillmen P., Coutre S. et al. Safety analysis of four randomized controlled studies of ibrutinib in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma or mantle cell lymphoma // Clin. Lymphoma Myeloma Leuk. 2018. Vol. 18, No. 10. P. 648–657. doi: 10.1016/j.clml.2018.06.016
- Ghez D., Calleja A., Protin C. et al. Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib // Blood. 2018. Vol. 131, No. 17. P. 1955–1959. doi: 10.1182/blood-2017-11-818286
- Ruchlemer R., Ben-Ami R., Bar-Meir M. et al. Ibrutinib-associated invasive fungal diseases in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: An observational study // Mycoses. 2019. Vol. 62, No. 12. P. 1140–1147. doi: 10.1111/myc.13001
- Rogers K.A., Mousa L., Zhao Q. et al. Incidence of opportunistic infections during ibrutinib treatment for B-cell malignancies // Leukemia. 2019. Vol. 33, No. 10. P. 2527–2530. doi: 10.1038/s41375-019-0481-1
- Woyach J.A. Ibrutinib and Aspergillus: a Btk-targeted risk // Blood. 2018. Vol. 132, No. 18. P. 1869–1870. doi: 10.1182/blood-2018-08-865659
- Ahn I.E., Jerussi T., Farooqui M. et al. Atypical Pneumocystis jirovecii pneumonia in previously untreated patients with CLL on single-agent ibrutinib // Blood. 2016. Vol. 128, No. 15. P. 1940–1943. doi: 10.1182/blood-2016-06-722991
- Hsiehchen D., Arasaratnam R., Raj K. et al. Ibrutinib use complicated by progressive multifocal leukoencephalopathy // Oncology. 2018. Vol. 95, No. 5. P. 319–322. doi: 10.1159/000490617
- Dousa K.M., Babiker A., van Aartsen D. et al. Ibrutinib therapy and mycobacterium chelonae. Skin and soft tissue infection // Open Forum Infect. Dis. 2018. Vol. 5, No. 7. P. ofy168. doi: 10.1093/ofid/ofy168
- Bose P., Gandhi V. Managing chronic lymphocytic leukemia in 2020: an update on recent clinical advances with a focus on BTK and BCL-2 inhibitors // Fac. Rev. 2021. No. 10. P. 22. doi: 10.12703/r/10-22
- Barf T., Covey T., Izumi R. et al. Acalabrutinib (ACP-196): A covalent bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile // J. Pharmacol. Exp. Ther. 2017. Vol. 363, No. 2. P. 240–252. doi: 10.1124/jpet.117.242909
- Awan F.T., Schuh A., Brown J.R. et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib // Blood Adv. 2019. Vol. 3, No. 9. P. 1553–1562. doi: 10.1182/bloodadvances.2018030007
- Yazdy M., Mato A., Roeker L. et al. Toxicities and outcomes of acalabrutinib-treated patients with chronic lymphocytic leukemia: a retrospective analysis of real world patients // Blood. 2019. Vol. 134, No. Suppl 1. P. 4311. doi: 10.1182/blood-2019-130062
- Sharman J.P., Egyed M., Jurczak W. et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial // Lancet. 2020. Vol. 395, No. 10232. P. 1278–1291. doi: 10.1016/S0140-6736(20)30262-2
Дополнительные файлы
