Parameter definition of on-board charging winding of multicopter with extended flight time
- Authors: Kim K.K.1, Mikhailov M.V.1, Koroleva E.B.1
-
Affiliations:
- Emperor Alexander I St. Petersburg State Transport University
- Issue: Vol 11, No 4 (2025)
- Pages: 545-558
- Section: Reviews
- URL: https://medbiosci.ru/transj/article/view/364017
- DOI: https://doi.org/10.17816/transsyst679911
- ID: 364017
Cite item
Full Text
Abstract
AIM: This work aimed to determine the required charging voltage of the battery using an on-board charging winding based on electromagnetic energy generated by the alternating current of the contact wire.
METHODS: A mathematical model was created in COMSOL Multiphysics® 6.0 using Maxwell’s equations and the finite element method to calculate the induced electromotive force in the on-board winding of an unmanned aerial vehicle.
RESULTS: The relationships between the electromotive force induced in the on-board charging winding and its parameters and the distance to the contact wire were determined. The study shows that for a 600 A current in the contact wire, the charging current can allow for battery recharging and the winding weight does not exceed the multicopter lifting capacity.
CONCLUSION: This method may only be recommended for battery recharging of an unmanned aerial vehicle.
About the authors
Konstantin K. Kim
Emperor Alexander I St. Petersburg State Transport University
Author for correspondence.
Email: kimkk@inbox.ru
ORCID iD: 0000-0001-7282-4429
SPIN-code: 3278-4938
Dr Sci. (Engineering), Professor
Russian Federation, St. PetersburgMikhail V. Mikhailov
Emperor Alexander I St. Petersburg State Transport University
Email: mihanikk2001@gmail.com
ORCID iD: 0009-0005-6587-6008
SPIN-code: 8379-4655
graduate student
Russian Federation, St. PetersburgElena B. Koroleva
Emperor Alexander I St. Petersburg State Transport University
Email: elzazybina@yandex.ru
ORCID iD: 0009-0002-1804-6982
SPIN-code: 5664-6112
Cand. Sci. (Engineering), Associate Professor
Russian Federation, St. PetersburgReferences
- Bogushevskaya VA, Zayats OV, Maslyakov YaN, et al. Development of a remote power supply system for unmanned aerial vehicles. Proceedings of MAI. 2012;51:1–14. (In Russ.) EDN: OWPABH
- Nazarenko PA. Model of a solar-powered UAV / PA Nazarenko, VI Satarova, LV Makarova. Proceedings of Tula State University. Technical sciences. 2021;10:44–51. (In Russ.) doi: 10.24412/2071-6168-2021-10-44-51 EDN: RMUUSU
- Ovchinnikov AV, Novikova KO, Fetisov VS. Recharge of VTOL UAVs on Landing Platforms with Adaptable Contact Band Width. Electrical and Data Processing Facilities and Systems. 2023;2(19):80–89. (In Russ.) doi: 10.17122/1999-5458-2023-19-2-80-89 EDN: ZTPPNW
- Patent RUS № 2837679 / 03.04.2025. Byul. № 10. Kim KK, Koroleva EB, Mikhajlov MV, Solov’ev AS. Sistema posadki bespilotnogo letatel’nogo apparata vertikal’nogo vzleta i posadki. (In Russ.) EDN: GEOEEC
- Kim KK, Koroleva EB, Vataev AS. Monitoring of railway infrastructure facilities using unmanned aerial vehicles. In: Eltrans–2023: proceedings of the XI International Symposium, St. Petersburg, May 31 – June 02, 2023 / Emperor Alexander I St. Petersburg State Transport University. St. Petersburg: NP-Print; 2023:247–252. (In Russ.)
- Kim KK, Koroleva EB., Tkachuk AA. Unmanned electric aircraft and systems for railway monitoring Transport of the Russian Federation. A journal about science, practice, and economics. 2024;6(115):44–51. (In Russ.) EDN: ICAUZZ
- Frolova EA, Dobroskok NA. Kriticheskij obzor metodov elektromagnitnoj beskontaktnoj peredachi energii. Razvivaya energeticheskuyu povestku budushchego: Sb. dokladov mezhd. nauch.-prakt. konf. dlya predstavitelej soobshchestva molodyh inzhenerov TEK, Sankt-Peterburg, 10–11 dekabrya 2021 goda. St. Peterburg: Sankt-Peterburgskij gosudarstvennyj elektrotekhnicheskij universitet im. V.I. Ul’yanova (Lenina), 2021:153–157. (In Russ.) EDN: KSMAZT
- Nguyen M, Nguyen CV, Truong LH, et al. Electromagnetic Field Based WPT Technologies for UAVs: A Comprehensive Survey. Electronics. 2020;9(3):461. doi: 10.3390/electronics9030461 EDN: EROGIC
- Yıldırım O. Analysis and experimental verification of efficiency parameters affecting inductively coupled wireless power transfer systems. Heliyon. 2024;10(5). doi: 10.1016/j.heliyon.2024.e27420 EDN: DDSEUF
- Shitov V. Jenergija po vozduhu: vse sposoby zarjadit’ dron // Mashiny i mehanizmy. 2022. №199 [Internet] [cited 2025 March 31]. Available from: https://21mm.ru/news/tehnologii/energiya-po-vozdukhu-vse-sposobyzaryadit-dron (In Russ.)
- Nikitin VV, Vasiliev VA, Zhao T. Wireless power transmission to the carriage of high speed magnetolevitational transport. Electronics and electrical equipment of transport. 2022; 1: 23-26. (In Russ.) EDN: HTBPUO
- Kim KK, Koroleva EB, Rybin PK, Stepanskaya OA. An unmanned aerial vehicle for monitoring an AC contact network. Modern Transportation Systems and Technologies. 2024;10(4):463–476. doi: 10.17816/transsyst636732 (In Russ.) EDN: KDGRRT
- Kim KK, Koroleva EB, Vataev AS, et al. Mathematical simulation of the contactless process in charging a multicopter battery from the external electromagnetic field. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering. 2024;4(151):28–46. (In Russ.) doi: 10.18698/0236-3941-2024-4 EDN: ZRDBMU
- Valinsky OS, Kim KK. Developments of St. Petersburg State University of Railway Communications in the Field of Non-traditional and Renewable Energy. Transport of the Russian Federation. A journal about science, practice, and economics. 2024;(2):32–38. (In Russ.)
- Patent № 042897 / 31.03.2023. Byul. 2023-03. Кim КК. Bespilotnyj letatel’nyj kompleks. (In Russ.) EDN: AGVBFH
- Kalantarov PL, Cejtlin LA. Calculating Inductances: Reference Book. Leningrad: Energoatomizdat, 1986 (In Russ.)
Supplementary files


