Review of diagnostic approaches for mental and cognitive impairment in post-traumatic stress disorder

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Post-traumatic stress disorder (PTSD) is becoming increasingly common among military personnel who have participated in combat operations, posing a significant challenge to their normal social functioning. Without effective rehabilitation programs, maladaptive behaviors can become habitual, hindering social integration. Therefore, it is crucial to start the mental recovery process as early as possible. This work evaluated the validity of the diagnostic approaches recommended by the Research Domain Criteria (RDoC) project in evaluating the PTSD severity. We used the RDoC and International Classification of Functioning, Disability, and Health (ICF) domains to evaluate PTSD-associated functional impairment. The work reviewed the syndromic heterogeneity of PTSD, the challenges of differential diagnosis, and the impact of etiological factors on the clinical presentation. We identified three main categories of functional impairment: stress-related behaviors, interpersonal interactions, and cognitive abilities. Diagnostic approaches and research paradigms were proposed to assess and standardize these categories. The RDoC and ICF concepts provide a new perspective on the pathogenesis of PTSD and development of personalized management strategies. It appears promising to enhance specialized diagnostic approaches for this patient population, considering their cultural and mental background.

About the authors

Dmitrii V. Ovchinnikov

Kirov Military Medical Academy

Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8408-5301
SPIN-code: 5437-3457

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Saint Petersburg

Andrey A. Marchenko

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-2906-5946
SPIN-code: 1693-5580

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Mikhail D. Gorbachev

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0001-4279-2515
SPIN-code: 7612-2070

scientific company operator

Russian Federation, Saint Petersburg

References

  1. Stevens JS, Jovanovic T. Role of social cognition in post-traumatic stress disorder: a review and meta-analysis. Genes, Brain and Behavior. 2019;18(1):e12518. doi: 10.1111/gbb.12518
  2. Yehuda R. Role of neurochemical and neuroendocrine markers of fear in classification of anxiety disorders. In: Stress-Induced and Fear Circuitry Disorders. Arlington, VA: American Psychiatric Association; 2009. P. 255–264.
  3. Faustova AG, Yurov IY. Epigenetic and genomic mechanisms in the pathogenesis of post-traumatic stress disorder (review). Research Results in Biomedicine. 2022;8(1):15–35. doi: 10.18413/2658-6533-2022-8-1-0-2 EDN: OBRHKK
  4. Shamrey VK, Lytkin VM, Barazenko KV, et al. PTSD development and dynamics. Medical, Biological, and Socio-Psychological Problems of Safety in Emergency Situations. 2023;(1):68–77. doi: 10.25016/2541-7487-2023-0-1-68-77 EDN: HCCING
  5. Shamrey VK, Marchenko AA, Driga BV, et al. Outcomes of hospital treatment for post-traumatic stress disorder in combatants. Current Therapy of Mental Disorders. 2022;(3):14–24. doi: 10.21265/PSYPH.2022.80.39.002 EDN: TDWSAM
  6. Jellestad L, Vital NA, Malamud J, et al. Functional impairment in posttraumatic stress disorder: a systematic review and meta-analysis. Journal of Psychiatric Research. 2021;136:14–22. doi: 10.1016/j.jpsychires.2021.01.023 EDN: OPMUAC
  7. Henigsberg N, Kalember P, Petrović ZK, et al. Neuroimaging research in posttraumatic stress disorder - focus on amygdala, hippocampus and prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2019;90:37–42. doi: 10.1016/j.pnpbp.2018.11.003
  8. Fitzgerald JM, DiGangi JA, Phan KL. Functional neuroanatomy of emotion and its regulation in PTSD. Harvard Review of Psychiatry. 2018;26(3):116–128. doi: 10.1097/HRP.0000000000000185
  9. Schmitz A, Grillon C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nature Protocols. 2012;7(3):527–532. doi: 10.1038/nprot.2012.001
  10. Milad MR, Wright CI, Orr SP, et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62(5):446–454. doi: 10.1016/j.biopsych.2006.10.011
  11. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research-past, present, and future. Biol Psychiatry. 2006;60(4):376–382. doi: 10.1016/j.biopsych.2006.06.004
  12. Shin LM, Bush G, Whalen PJ, et al. Dorsal anterior cingulate function in posttraumatic stress disorder. J Trauma Stress. 2007;20(5):701–712. doi: 10.1002/jts.20246
  13. Cherek DR, Moeller FG, Schnapp W, et al. Studies of violent and nonviolent male parolees: I. Laboratory and psychometric measurements of aggression. Biol Psychiatry. 1997;41(5):514–522. doi: 10.1016/S0006-3223(96)00330-5
  14. Geniole SN, MacDonell ET, McCormick CM. The Point Subtraction Aggression Paradigm as a laboratory tool for investigating the neuroendocrinology of aggression and competition. Horm Behav. 2017;92:103–116. doi: 10.1016/j.yhbeh.2017.05.001
  15. Golomb BA, Cortez-Perez M, Jaworski BA, et al. Point subtraction aggression paradigm: validity of a brief schedule of use. Violence Vict. 2007;22(1):95–103. doi: 10.1891/088667007780477348
  16. Skibsted AP, Cunha-Bang SD, Carré JM, et al. Aggression-related brain function assessed with the point subtraction aggression paradigm in fMRI. Aggressive Behavior. 2017;43(6):601–610. doi: 10.1002/ab.21718
  17. Pavlov IP. Lectures on the work of the cerebral hemispheres. Complete works: in 6 vols. 2nd ed., add. Moscow: USSR Academy of Sciences; 1951;3(2):318–592.
  18. Norrholm SD, Jovanovic T, Olin IW, et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry. 2011;69(6):556–563. doi: 10.1016/j.biopsych.2010.10.015
  19. Zeidan MA, Lebron-Milad K, Thompson-Hollands J, et al. Test-retest reliability during fear acquisition and fear extinction in humans. CNS Neurosci Ther. 2012;18(4):313–317. doi: 10.1111/j.1755-5949.2011.00238.x
  20. McDonald S, Flanagan S, Rollins J, et al. TASIT: a new clinical tool for assessing social perception after traumatic brain injury. J Head Trauma Rehabil. 2003;18(3):219–238. doi: 10.1097/00001199-200305000-00001
  21. McDonald S, Flanagan S, Martin I, et al. The ecological validity of TASIT: a test of social perception. Neuropsychol Rehabil. 2004;14(3):285–302. doi: 10.1080/09602010343000237
  22. McCarron KK, Dasgupta MK, Campbell CA, et al. Social rehabilitation for military veterans with traumatic brain injury, psychological trauma, and chronic neuropsychiatric symptoms: intervention development and initial outcomes. Psychiatr Rehabil J. 2019;42(3):296–306. doi: 10.1037/prj0000356
  23. Gur RC, Sara R, Hagendoorn M, et al. A method for obtaining 3-dimensional facial expressions and its standardization for use in neurocognitive studies. J Neurosci Methods. 2002;115(2):137–143. doi: 10.1016/S0165-0270(02)00006-7
  24. Carter CS, Barch DM, Gur R, et al. CNTRICS final task selection: social cognitive and affective neuroscience-based measures. Schizophr Bull. 2009;35(1):153–162. doi: 10.1093/schbul/sbn155
  25. Zimet GD, Dahlem NW, Zimet SG, et al. The multidimensional scale of perceived social support. J Pers Assess. 1988;52(1):30–41. doi: 10.1207/s15327752jpa5201_2
  26. Kazarian SS, McCabe SB. Dimensions of social support in the MSPSS: factorial structure, reliability, and theoretical implications. J Community Psychol. 1991;19(2):150–160. doi: 10.1002/1520-6629(199104)19:2<150::AID-JCOP2290190206>3.0.CO;2-J
  27. Simon N, Roberts NP, Lewis CE, et al. Associations between perceived social support, posttraumatic stress disorder (PTSD) and complex PTSD (CPTSD): implications for treatment. Eur J Psychotraumatol. 2019;10(1):1573129. doi: 10.1080/20008198.2019.1573129
  28. Aupperle RL, Melrose AJ, Stein MB, et al. Executive function and PTSD: disengaging from trauma. Neuropharmacology. 2012;62(2):686–694. doi: 10.1016/j.neuropharm.2011.02.008
  29. Dutra SJ, Marx BP, McGlinchey R, et al. Reward ameliorates posttraumatic stress disorder-related impairment in sustained attention. Chronic Stress. 2018;2:2470547018812400. doi: 10.1177/2470547018812400
  30. Esterman M, Noonan SK, Rosenberg M, et al. In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex. 2013;23(11):2712–2723. doi: 10.1093/cercor/bhs261
  31. Ashley V, Honzel N, Larsen J, et al. Attentional bias for trauma-related words: exaggerated emotional Stroop effect in Afghanistan and Iraq war veterans with PTSD. BMC Psychiatry. 2013;13(1):86. doi: 10.1186/1471-244X-13-86 EDN: EEDHLF
  32. Sierk A, Manthey A, King J, et al. Allocentric spatial memory performance predicts intrusive memory severity in posttraumatic stress disorder. Neurobiol Learn Mem. 2019;166:107093. doi: 10.1016/j.nlm.2019.107093
  33. Johnsen GE, Asbjørnsen AE. Verbal learning and memory impairments in posttraumatic stress disorder: the role of encoding strategies. Psychiatry Research. 2009;165(1-2):68–77. doi: 10.1016/j.psychres.2007.10.011
  34. Sternberg S. High-speed scanning in human memory. Science. 1966;153(3736):652–654. doi: 10.1126/science.153.3736.652 EDN: IDCNGR
  35. Vinkhuyzen AAE, Van Der Sluis S, Boomsma DI, et al. Individual differences in processing speed and working memory speed as assessed with the Sternberg memory scanning task. Behavior Genetics. 2010;40(3):315–326. doi: 10.1007/s10519-009-9315-7 EDN: NZEGTH
  36. Sun X, Yuan H. Promising applications of non-invasive brain stimulation on military cognition enhancement: a long way to go. Gen Psychiatr. 2023;36(5):e101264. doi: 10.1136/gpsych-2023-101264 EDN: TWXAXK
  37. Anderson JR, Zhang Q, Borst JP, et al. The discovery of processing stages: extension of Sternberg's method. Psychol Rev. 2016;123(5):481–509. doi: 10.1037/rev0000030
  38. Rensink RA. Change detection. Ann Rev Psychol. 2002;53(1):245–277. doi: 10.1146/annurev.psych.53.100901.135125 EDN: YIVHBM
  39. Zhao C, Vogel E, Awh E. Change localization: a highly reliable and sensitive measure of capacity in visual working memory. Atten Percept Psychophys. 2023;85(5):1681–1694. doi: 10.3758/s13414-022-02586-0 EDN: JIVKSU
  40. Truong J, Buschkuehl M, Smith-Peirce RN, et al. Change-detection training and its effects on visual processing skills. Sci Rep. 2022;12(1):12646. doi: 10.1038/s41598-022-16755-6 EDN: AGJAGZ
  41. Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55(4):352–358. doi: 10.1037/h0043688
  42. Miró-Padilla A, Bueichekú E, Ventura-Campos N, et al. Long-term brain effects of N-back training: an fMRI study. Brain Imaging Behav. 2019;13(4):1115–1127. doi: 10.1007/s11682-018-9925-x EDN: MHQPOM
  43. Pergher V, Wittevrongel B, Tournoy J, et al. N-back training and transfer effects revealed by behavioral responses and EEG. Brain Behav. 2018;8(11):e01136. doi: 10.1002/brb3.1136
  44. Dretsch MN, Thiel KJ, Athy JR, et al. Mood symptoms contribute to working memory decrement in active-duty soldiers being treated for posttraumatic stress disorder. Brain Behav. 2012;2(4):357–364. doi: 10.1002/brb3.53
  45. Judah MR, Renfroe JB, Wangelin BC, et al. Hyperarousal symptoms explain the relationship between cognitive complaints and working memory performance in veterans seeking PTSD treatment. J Head Trauma Rehabil. 2018;33(4):E10–E16. doi: 10.1097/HTR.0000000000000347
  46. Mathew AS, Lotfi S, Bennett KP, et al. Association between spatial working memory and re-experiencing symptoms in PTSD. J Behav Ther Exp Psychiatry. 2022;75:101714. doi: 10.1016/j.jbtep.2021.101714 EDN: UBMVME
  47. Runyan A, Philippi CL, Pessin S, et al. Comparing resting-state connectivity of working memory networks in US service members with mild traumatic brain injury and posttraumatic stress disorder. Brain Res. 2022;1796:148099. doi: 10.1016/j.brainres.2022.148099 EDN: TZMPVL
  48. Ragland JD, Ranganath C, Barch DM, et al. Relational and item-specific encoding (RISE): task development and psychometric characteristics. Schizophr Bull. 2012;38(1):114–124. doi: 10.1093/schbul/sbr146
  49. Kitayama N, Vaccarino V, Kutner M, et al. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord. 2005;88(1):79–86. doi: 10.1016/j.jad.2005.05.014
  50. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169–191. doi: 10.1038/npp.2009.83
  51. Blair KS, Vythilingam M, Crowe SL, et al. Cognitive control of attention is differentially affected in trauma-exposed individuals with and without post-traumatic stress disorder. Psychol Med. 2013;43(1):85–95. doi: 10.1017/S0033291712000840
  52. Bomyea J, Amir N, Lang AJ. The relationship between cognitive control and posttraumatic stress symptoms. J Behav Ther Exp Psychiatry. 2012;43(2):844–848. doi: 10.1016/j.jbtep.2011.11.002
  53. Rosvold HE, Mirsky AF, Sarason I, et al. A continuous performance test of brain damage. J Consult Psychol. 1956;20(5):343–350. doi: 10.1037/h0043220
  54. Janowich JR, Cavanagh JF. Delay knowledge and trial set count modulate use of proactive versus reactive control: a meta-analytic review. Psychon Bull Rev. 2018;25(4):1249–1268. doi: 10.3758/s13423-018-1502-1 EDN: CLABCY
  55. Logan GD, Cowan WB. On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev. 1984;91(3):295–327. doi: 10.1037/0033-295X.91.3.295
  56. Grillon C, Robinson OJ, Krimsky M, et al. Anxiety-mediated facilitation of behavioral inhibition: threat processing and defensive reactivity during a go/no-go task. Emotion. 2017;17(2):259–266. doi: 10.1037/emo0000219
  57. Korgaonkar MS, Felmingham KL, Malhi GS, et al. Changes in neural responses during affective and non-affective tasks and improvement of posttraumatic stress disorder symptoms following trauma-focused psychotherapy. Transl Psychiatry. 2023;13(1):85. doi: 10.1038/s41398-023-02381-x EDN: QSTLDE
  58. Logan GD, Cowan WB, Davis KA. On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform. 1984;10(2):276–291. doi: 10.1037/0096-1523.10.2.276
  59. Amick MM, Clark A, Fortier CB, et al. PTSD modifies performance on a task of affective executive control among deployed OEF/OIF veterans with mild traumatic brain injury. J Int Neuropsychol Soc. 2013;19(7):792–801. doi: 10.1017/S1355617713000541
  60. Sadeh N, Spielberg JM, Hayes JP. Impulsive responding in threat and reward contexts as a function of PTSD symptoms and trait disinhibition. J Anxiety Disord. 2018;53:76–84. doi: 10.1016/j.janxdis.2017.09.008
  61. Swick D, Honzel N, Larsen J, et al. Impaired response inhibition in veterans with post-traumatic stress disorder and mild traumatic brain injury. J Int Neuropsychol Soc. 2012;18(5):917–926. doi: 10.1017/S1355617712000466
  62. Miller LN, Forbes D, McFarlane AC, et al. Cumulative trauma load and timing of trauma prior to military deployment differentially influences inhibitory control processing across deployment. Sci Rep. 2023;13(1):21414. doi: 10.1038/s41598-023-48747-5 EDN: SSULRQ
  63. Echiverri-Cohen A, Spierer L, Perez M, et al. Randomized-controlled trial of response inhibition training for individuals with PTSD and impaired response inhibition. Behav Res Ther. 2021;143:103885. doi: 10.1016/j.brat.2021.103885 EDN: HNNLQV
  64. Harlé KM, Spadoni AD, Norman SB, et al. Neurocomputational changes in inhibitory control associated with prolonged exposure therapy. J Trauma Stress. 2020;33(4):500–510. doi: 10.1002/jts.22461
  65. Smits FM, Geuze E, Schutter DJ, et al. Effects of tDCS during inhibitory control training on performance and PTSD, aggression and anxiety symptoms: a randomized-controlled trial in a military sample. Psychol Med. 2022;52(16):3964–3974. doi: 10.1017/S0033291722000466 EDN: ZELEKV
  66. Gehring WJ, Liu Y, Orr JM, et al. The error-related negativity. Perspect Psychol Sci. 2018;13(2):200–204. doi: 10.1177/1745691617715310
  67. Perlstein WM, Carter CS, Barch DM, et al. The Stroop task and attention deficits in schizophrenia: a critical evaluation of card and single-trial Stroop methodologies. Neuropsychology. 1998;12(3):414–425. doi: 10.1037/0894-4105.12.3.414
  68. Stroop JR. Studies of interference in serial verbal reactions. J Experimental Psychology. 1935;18(6):643–662. doi: 10.1037/h0054651
  69. Kimble MO, Frueh BC, Marks L. Does the modified Stroop effect exist in PTSD? Evidence from dissertation abstracts and the peer reviewed literature. J Anxiety Disord. 2009;23(5):650–655. doi: 10.1016/j.janxdis.2009.02.002
  70. Blekic W, Rossignol M, D'Hondt F. Examining attentional avoidance in post-traumatic stress disorder: an exploratory 'Face in the Crowd' paradigm using eye-tracking. Eur J Psychotraumatol. 2025;16(1):2462489. doi: 10.1080/20008066.2025.2462489 EDN: XKAHXM
  71. Kimble MO, Fleming K, Bandy C, et al. Eye tracking and visual attention to threatening stimuli in veterans of the Iraq war. J Anxiety Disord. 2010;24(3):293–299. doi: 10.1016/j.janxdis.2009.12.006
  72. Olatunji BO, Armstrong T, Bilsky SA, et al. Threat modulation of visual search efficiency in PTSD: a comparison of distinct stimulus categories. Psychiatry Res. 2015;229(3):975–982. doi: 10.1016/j.psychres.2015.05.103
  73. Potter MC. Short-term conceptual memory for pictures. J Exp Psychol Hum Learn. 1976;2(5):509–522. doi: 10.1037/0278-7393.2.5.509
  74. Olatunji BO, Armstrong T, McHugo M, et al. Heightened attentional capture by threat in veterans with PTSD. J Abnormal Psychology. 2013;122(2):397–409. doi: 10.1037/a0030447

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».