Lorden's inequality and the rate of convergence of the distribution of one generalized erlang -- sevast'yanov queuing system
- Authors: Zverkina G.A.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 102 (2023)
- Pages: 15-43
- Section: Mathematical control theory
- URL: https://medbiosci.ru/1819-2440/article/view/363790
- DOI: https://doi.org/10.25728/ubs.2023.102.2
- ID: 363790
Cite item
Full Text
Abstract
About the authors
Galina Aleksandrovna Zverkina
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: zverkina@gmail.com
Moscow
References
1. АНИЧКИН С.А. Склеивание процессов восстановления иего применение // Проблемы устойчивости стохастическихмоделей. Труды семинара. – 1984. – М.: ВНИИСИ. –C. 4–24. 2. БОРИСОВ И.С. Методы одного вероятностного про-странства для марковских процессов // Тр. Ин-та матема-тики. – 1982. – Т. 1. – С. 4–18. 3. БОРОВКОВ А.А. Обобщенные процессы восстановления. –М.: Российская академия наук, 2020. – 453 с. 4. СЕВАСТЬЯНОВ Б.А. Формулы Эрланга в телефонии припроизвольном законе распределения длительности разгово-ра // Труды Третьего Всесоюзного математического съезда,Москва, июнь–июль 1956. – 1959. –Т. 4. – М.: Изд-во АНСССР. – C. 121–135. 5. СЕВАСТЬЯНОВ Б.А. Эргодическая теорема для марков-ских процессов и ее приложение к телефонным системамс отказами // Теория вероятн. и ее примен. – 1957. – Т. 2,вып. 1. – С. 106–116. 6. ШЕЛЕПОВА А.Д., САХАНЕНКО А.И. Об асимптотике ве-роятности невыхода неоднородного обобщенного процессавосстановления за невозрастающую границу // Сиб. элек-трон. матем. изв. – 2021. – Т. 18:2. – С. 1667—1688. 7. AFANASYEVA L.G., TKACHENKO A.V. On theConvergence Rate for Queueing and Reliability ModelsDescribed by Regenerative Processes // Journal ofMathematical Sciences. – October 2016. – Vol. 218, Issue 2. –P. 119–36. 8. ASMUSSEN S. Applied probability and queues. – Springer,New York, 2003. 9. CHANG J. T. Inequalities for the Overshoot // The Annals ofApplied Probability. – 1994. – Vol. 4(4). – P. 1223. 10. DOEBLIN W. Exposé de la théorie des cha ˆ ines simplesconstantes de Markov à un nombre fini d’états // Rev. Math.de l’Union Interbalkanique. – 1938. – Vol.2. – P. 77–105. 11. ERLANG A. K. Solution of some problems in the theory ofprobabilities of significance in automatic telephone exchanges //Elektroteknikeren. – 1917. – Vol. 13 – P. 5–13 (in Danish);Engl. transl.: P.O. Elect. Eng. Journal. – 1918. – Vol. 10. –P. 189–197; Reprinted as: WEB-based edition bypermission from the Danish Acad. Techn. Sci. athttp://oldwww.com.dtu.dk/teletraffic/Erlang.html. 12. FERREIRA M.A., ANDRADE M. The M|G|∞ queuebusy period distribution exponentiality // Journal of appliedmathematics. – 2011. – Vol. 4, No. 3. – P. 249–260. 13. FORTET R. Calcul des probabilités. – CNRS, Paris, 1950. 14. GRIFFEATH D. A maximal coupling for Markov chains // undZeitschrift für Wahrscheinlichkeitstheorie Verwandte Gebiete. –1975. – Vol. 31, Iss. 2. – P. 95–106. 15. KALASHNIKOV V.V. Mathematical Methods in QueuingTheory. – Kluwer Academic Publishers, Amsterdam, 1994. 16. KALIMULINA E., ZVERKINA G. On some generalization ofLorden’s inequality for renewal processes // arXiv.org. Cornell:Cornell university library. – 2019. – 1910.03381v1. – P. 1–5. 17. KATO K. Coupling Lemma and Its Application to TheSecurity Analysis of Quantum Key Distribution // TamagawaUniversity Quantum ICT Research Institute Bulletin. – 2014. –Vol.4, No.1, – P. 23-30. 18. LORDEN G. On Excess over the Boundary // The Annals ofMathematical Statistics. – 1970. – Vol. 41(2). – P. 520–527. 19. PECHINKIN A.V. On an invariant queueing system // Math.Operationsforsch. Statist. Ser. Optim. – 1983. – Vol. 14(3). –P. 433–444. 20. PECHINKIN A.V., SOLOVYEV A.D., YASHKOV S.F. Asystem with servicing discipline whereby the order of minimumremaining length is serviced first // Eng. Cybern. – 1979. –Vol. 17(5). – P. 38–45. 21. SMITH W. L. Renewal theory and its ramifications // J. Roy.Statist. Soc. – 1958. – Ser. B, Vol. 20:2. – P. 243–302. 22. STADJE W. The busy period of the queueing system M|G|∞ //Journal of Applied Probability. – 1985. – Vol. 22. – P. 697–704. 23. STOYAN D. Qualitative Eigenschaften und Abschtzungenstochastischer Modelle. – Berlin, 1977. 24. TAK ´ ACS L. Introduction to the Theory of Queues. – OxfordUniversity Press, 1962. 25. VAN DOORN E.A., ZEIFMAN A.I. On the speed ofconvergence to stationarity of the Erlang loss system //Queueing Systems. – 2009. – Vol. 63. – P. 241–252. 26. VERETENNIKOV A.YU. On rate of convergence to thestationary distribution in queueing systems with one servingdevice // Automation and Remote Control. – Vol. 74, Iss. 10. –P. 1620–1629. (2013). 27. VERETENNIKOV A.YU. On the rate of mixing andconvergence to a stationary distribution in Erlang-type systemsin continuous time // Problems Inf. Transmiss. –2010. – Vol.46(4). – P. 382–389. 28. VERETENNIKOV A.YU. The ergodicity of service systemswith an infinite number of servomechanisms // Математиче-ские заметки. – 1977. – Vol. 22(4). – P. 804–808. 29. VERETENNIKOV A., BUTKOVSKY O. A. On asymptoticsfor Vaserstein coupling of Markov chains // Stochastic Processesand their Applications. – 2013. – Vol. 123(9). – P. 3518–3541. 30. VERETENNIKOV A.YU., ZVERKINA G.A. Simple proof ofDynkin’s formula for single-server systems and polynomialconvergence rates // Markov Proc. Rel. Fileds. – 2014. –Vol. 20, Iss. 3. – P. 479–504; arXiv:1306.2359 [math.PR](2013). 31. ZVERKINA G. On strong bounds of rate of convergence forregenerative processes // Communications in Computer andInformation Science. – 2016. – Vol. 678. – P. 381–393. 32. ZVERKINA G. Lorden’s inequality and coupling methodfor backward renewal process // Proc. of XX Int. Conf. onDistributed Computer and Communication Networks: Control,Computation, Communications (DCCN-2017, Moscow),2017. – P. 484–491. 33. ZVERKINA G. On strong bounds of rate of convergence forregenerative processes // Communications in Computer andInformation Science – 2016. – Vol. 678. – P. 381–393. 34. ZVERKINA G. About some extended Erlang-Sevast’yanovqueueing system and its convergence rate (English and Russianversions) // https:∖∖arxiv.org/abs/1805.04915; Фундаменталь-ная и прикладная математика. – 2018. – No. 22, Iss. 3. –P. 57–82. 35. ZVERKINA G., KALIMULINA E. On generalized intensityfunction and its application to the backward renewal timeestimation for renewal processes // Proc. of the 5th Int. Conf.on Stochastic Methods (ICSM-5, 2020). – 2020. – М.: Изд-воРУДН. – P. 306–310.
Supplementary files


