Adaptive control with a guarantee of a given performance
- Authors: Furtat I.B.1, Gushchin P.A.1, Nguyen B.H.1, Kolesnik N.S.1
-
Affiliations:
- Institute of Problems of Mechanical Engineering RAS
- Issue: No 102 (2023)
- Pages: 44-57
- Section: Control systems analysis and design
- URL: https://medbiosci.ru/1819-2440/article/view/363791
- DOI: https://doi.org/10.25728/ubs.2023.102.3
- ID: 363791
Cite item
Full Text
Abstract
Keywords
About the authors
Igor Borisovich Furtat
Institute of Problems of Mechanical Engineering RAS
Email: cainenash@mail.ru
St.Peterburg
Pavel Aleksandrovich Gushchin
Institute of Problems of Mechanical Engineering RAS
Email: guschin.p@mail.ru
St.Peterburg
Ba Huy Nguyen
Institute of Problems of Mechanical Engineering RAS
Email: leningrat206@gmail.com
St.Peterburg
Nikita Sergeevich Kolesnik
Institute of Problems of Mechanical Engineering RAS
Email: nik.kolesnik.1998@mail.ru
St.Peterburg
References
1. ЕРЕМИН Е.Л. Алгоритм адаптивной системы управле-ния с явно-эталонной моделью для строго мниимально-фазового объекта // Информатика и системы управления. –2004. – №2, Т. 8. – С. 157–166. 2. МИРОШНИК И.В., НИКИФОРОВ В.О., ФРАДКОВ А.Л.Нелинейное и адаптивное управление сложными динами-ческими системами. – СПб.: Наука, 2000. 3. ФРАДКОВ А.Л. Кибернетическая физика: принципы и при-меры. – СПб.: Наука, 2003. 4. ФУРТАТ И.Б., ГУЩИН П.А. Управление динамическимиобъектами с гарантией нахождения регулируемого сигна-ла в заданном множестве // Автоматика и телемеханика. –2021. – №4. – С. 121–139. 5. ХАЛИЛ Х.К. Нелинейные системы. – М.-Ижевск: НИЦ «Ре-гулярная и хаотическая динамика», Институт компьютер-ных исследований, 2009. 6. ANDERSON B.D.O. Adaptive systems, lack of persistency ofexcitation and bursting phenomena // Automatica. – 1985. –Vol. 21, No. 3. – P. 247–258. 7. ANNASWAMY A.M., SKANTZE F.P., LOH A.-P. Adaptivecontrol of continuous time systems with convex/concaveparametrization // Automatica. – 1998. – Vol. 34, No. 1. –P. 33–49. 8. ARSLAN G., BASAR T. Disturbance attenuating controllerdesign for strict-feedback systems with structurally unknowndynamics // Automatica. – 2001. – Vol. 37, No. 8. –P. 1175–1188. 9. CAMPION G., BASTIN G. Analysis of an adaptive controllerfor manipulators: Robustness versus flexibility // Systems &Control Letters. – 1989. – Vol. 12, No. 3. – P. 251–258. 10. CHOPRA N., SPONG M.W. Output Synchronization ofNonlinear Systems with Relative Degree One // RecentAdvances in Learning and Control. – Springer, London, 2008. –Vol. 371. – P. 51–64. 11. FARZA M., M’SAAD M., MAATOUG T., KAMOUN M.Adaptive observers for nonlinearly parameterized class ofnonlinear systems // Automatica. – 2009. – Vol. 45, No. 10. –P. 2292–2299. 12. FURTAT I.B. Robust Synchronization of the StructuralUncertainty Nonlinear Network with Delay and Disturbances //IFAC Proc. Volumes (IFAC-PapersOnline), 11th IFAC Int.Workshop on Adaptation and Learning in Control and SignalProcessing, ALCOSP–2013. – 2013. – P. 227–232. 13. FURTAT I., GUSHCHIN P. Nonlinear feedback controlproviding plant output in given set // Int. Journal of Control. –2021. – DOI: https://doi.org/10.1080/00207179.2020.1861336. 14. GOODWIN G.C., MAYNE D.Q. A parameter estimationperspective of continuous time model reference adaptivecontrol // Automatica. – 1987. – Vol. 23, No. 1. – P. 57–70. 15. HASHIM Z.S., IBRAHEEM I.K. A relative degree onemodified active disturbance rejection control for four-tanklevel control system // Int. Review of Applied Sciences andEngineering. – 2021. – No. 2, Vol. 8. – P. 157–166. 16. IOANNOU P.A., SUN J. Robust Adaptive Control. – CourierCorporation, 2012. 17. NARENDRA K.S., ANNASWAMY A.M. Stable AdaptiveSystems. – Courier Corporation, 2012. 18. POLYCARPOU M.M., IOANNOU P.A. A robust adaptivenonlinear control design // Automatica. – 1996. – Vol. 32,No. 3. – P. 423–427. 19. RIFAI K.E., YOUCEF-TOUMI K. Robust Adaptive Control ofSwithched system. – InTech, Switched Systems, 2009. 20. TAO G. Multivariable adaptive control: A survey //Automatica. – 2014. –Vol. 50, No. 11. – P.2737–2764. 21. ZHAO G., CHEN G., MI J. Overcoming a FundamentalLimitation of Linear Systems with Generalized First OrderReset Element // Proc. of the 37th Chinese Control Conference(CCC). – 2018. – doi: 10.23919/ChiCC.2018.8483381.
Supplementary files


