Forecasting of the remaining useful life in conditions of small data sample
- Authors: Zadiran K.S.1, Shcherbakov M.V.1, Sai C.K.1
-
Affiliations:
- Volgograd state technical university
- Issue: No 102 (2023)
- Pages: 99-113
- Section: Control systems diagnosis and reliability
- URL: https://medbiosci.ru/1819-2440/article/view/363794
- DOI: https://doi.org/10.25728/ubs.2023.102.6
- ID: 363794
Cite item
Full Text
Abstract
About the authors
Konstantin Sergeevich Zadiran
Volgograd state technical university
Email: konstantin.zadiran@gmail.com
Volgograd
Maxim Vladimirovich Shcherbakov
Volgograd state technical university
Email: maxim.shcherbakov@vstu.ru
Volgograd
Cuong Kvong Sai
Volgograd state technical university
Email: svcuonghvktqs@gmail.com
Volgograd
References
1. ГУНИНА И.А., ШКАРУПЕТА Е.В., РЕШЕТОВ В.В. Прорывное технологическое развитие промышленных комплексов в условиях цифровой трансформации // Ин-новационные кластеры цифровой экономики: теория и практика. – 2018. – С. 535–554. 2. КУПРИЯНОВСКИЙ В.П., НАМИОТ Д.Е., ДРОЖЖИ-НОВ В.И., КУПРИЯНОВСКАЯ Ю.В., ИВАНОВ М.О. Интернет вещей на промышленных предприятиях // International Journal of Open Information Technologies. – 2016. – №12. – С. 156–161. 3. ЛЫСЕНКО С.В., ТЕН Э.В. Об оценке остаточного ре-сурса башенных кранов // Проблемы современной науки и образования. – 2016. – №1. – С. 98–102. 4. САЙ ВАН КВОНГ, ЩЕРБАКОВ М.В. Метод прогнози-рования остаточного ресурса на основе обработки данных многообъектных сложных систем // Прикаспий-ский журнал: управление и высокие технологии. – 2019. – №1(45). – C. 33–44. 5. ШИЛОВА Е.В., ДЬЯКОВ А.Р. О феномене четвертой промышленной революции и его влиянии на экономику и управление // Вестник Прикамского социального инсти-тута. – 2018. – №3(81). – С. 86–95. 6. A Grammar Of Data Manipulation – Dplur. – URL: https://dplyr.tidyverse.org (дата обращения: 03.04.2022). 7. CERNUDA C. On the relevance of preprocessing in predic-tive maintenance for dynamic systems // In: Lughofer E., Sayed-Mouchaweh M. (Eds.). Predictive Maintenance in Dynamic Systems. Cham, Springer. – 2019. – P. 53–93. 8. CHENG J.C., CHEN W., CHEN K., WANG Q. Data-driven predictive maintenance planning framework for MEP com-ponents based on BIM and IoT using machine learning al-gorithms // Automation in Construction. – 2020. – Vol. 112. – P. 1– 21. 9. CHE-SHENG H., JEHN-RUEY J. Remaining useful life esti-mation using long short-term memory deep learning // IEEE Int. Conf. on Applied System Invention (ICASI–2018), Chi-ba, Japan. – 2018. – P. 58–61. 10. CRAN – Packages. – URL: https://cran.r-project.org/web/packages/ (дата обращения: 03.04.2022). 11. Forecast Package – RDocumentation. – URL: https://www.rdocumentation.org/packages/forecast (дата обраще-ния: 03.04.2022). 12. GOEBEL K., SAHA B., SAXENA A., CELAYA J.R., CHRISTOPHERSEN J.P. Prognostics in battery health man-agement // IEEE Instrumentation & Measurement Magazine. – 2008. – Vol. 8. – P. 33–40. 13. HUANG Z.Y., XU Z.G., WANG W.H., SUN Y.X. Remain-ing usefullife prediction for a nonlinear heterogeneous Wie-ner process model withan adaptive drift // IEEE Trans. Rel. – June, 2015. – Vol. 64, No. 2. – P. 687–700. 14. Identify and replace outliers in time series. – URL: https://pkg.robjhyndman.com/forecast/reference/tsoutliers.html (дата обращения: 03.04.2022). 15. LEI Y., LI N., GONTARZ S., LIN J, RADKOWSKI S., DYBALA J. A Model-Based Method for Remaining Useful Life Prediction of Machinery // IEEE Trans. on Reliability. – 2017. – Vol. 65. – P. 1314–1326. 16. LI X., DING Q., SUN J. Remaining useful life estimation in prognostics using deep convolution neural networks // Re-liab. Eng. Syst. Saf. – 2018. – Vol. 172. – P. 1–11. 17. LIU J., WANG W., MA F., YANG Y.B., YANG C.S. A da-ta-model-fusionprognostic framework for dynamic system state forecasting // Eng. Appl.Artif. Intell. – June, 2012. – Vol. 25, No. 4. – P. 814–823. 18. PATIL S., PATIL A., HANDIKHERKAR V., DESAI S., PHALLE V. M., KAZI F. S. Remaining Useful Life (RUL) Prediction of Rolling Element Bearing Using Random Forest and Gradient Boosting Technique // ASME 2018 Interna-tional Mechanical Engineering Congress and Exposition. – 2018. – P. 1–7. 19. RAN Y., ZHOU X., LIN P., WEN Y., DENG R. A Survey of Predictive Maintenance: Systems, Purposes and Approaches // IEEE communications Surveys & Tutorials. – 2019. – P. 1–36. 20. SHCHERBAKOV M.V. A Survey of Forecast Error Measures // World Applied Sciences Journal (WASJ). – 2013. – No. 24. – P. 171–176. 21. XIONGZI C., JINSONG Y., DIYIN T. YINGXUN W. Re-maining useful life prognostic estimation for aircraft subsys-tems or components: A review // 10th IEEE Int. Conf. on Electronic Measurement & Instruments (ICEMI). – 2011. – Vol. 2. – P. 94. 22. YAN M., WANG X., WANG B., CHANG M., MUHAM-MAD I. Bearing remaining useful life prediction using sup-port vector machine and hybrid degradation tracking model // ISA Trans. – 2020. – Vol. 98. – P. 471–482. 23. YU J. Remaining useful life prediction for lithium-ion batter-ies using a quantum particle swarm optimization-based par-ticle filter // Quality Engineering. – 2017. – Vol 29. – P. 536–546. 24. ZHANG Z., SI X., HU C., LEY Y. Degradation data analy-sis and remaining useful life estimation: A review on Wiener-process-based methods // European Journal of Operational Research. – 2018. – Vol. 271(3). – P. 775–796.
Supplementary files


