The anisotropy-based estimation problem for time invariant systems: the left asymptotics
- Authors: Belov I.R.1, Kustov A.Y.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 103 (2023)
- Pages: 94-120
- Section: Control systems analysis and design
- URL: https://medbiosci.ru/1819-2440/article/view/363798
- DOI: https://doi.org/10.25728/ubs.2023.103.4
- ID: 363798
Cite item
Full Text
Abstract
About the authors
Ivan Romanovich Belov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: ivanb1993@mail.ru
Moscow
Arkadiy Yur'evich Kustov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: arkadiykustov@yandex.ru
Moscow
References
1. ВЛАДИМИРОВ И.Г., КУРДЮКОВ А.П., СЕМЕНОВ А.В.Асимптотика анизотропийной нормы линейных стацио-нарных систем // Автоматика и телемеханика. – 1999. –№3. – С. 78—87. 2. ТИМИН В.Н., КУРДЮКОВ А.П. Синтез робастной систе-мы управления на режиме посадки самолета в условияхсдвига ветра // Известия РАН. Техническая кибернетика. –1993. – №6. – C. 200—208. 3. ANDERSON B.D.O., MOORE J.B. Optimal Filtering. – NewJersey: Prentice Hall. 1979. 4. BELOV I.R., YURCHENKOV A.V., KUSTOV A.YU.Anisotropy-Based Bounded Real Lemma for MultiplicativeNoise Systems: the Finite Horizon Case // Proc. of the27th Mediterranean Conference on Control and Automation(MED). – 2019. 5. DEY S., MOORE J.B. Risk-sensitive filtering and smoothingvia reference probability methods // IEEE Trans. on AutomaticControl. – 1997. – Vol. 42, No. 11. – P. 1587–1591. 6. HASSIBI B., SAYED A., KAILATH T. Indefinite QuadraticEstimation and Control: A Unified Approach to ℋ 2 and ℋ ∞Theories. – Philadelphia: SIAM. 1999. 7. KAILATH T. A view of three decades of linear filtering theory //IEEE Trans. on Information Theory. – 1974. – Vol. 20, No. 2. –P. 146–181. 8. KALMAN R.E. A New Approach to Linear Filtering andPrediction Problems // J. Basic Eng., Trans. ASME, Series D. –1960. – Vol. 82, No. 1. – P. 35–45. 9. KOROTINA M., ARANOVSKIY S., BOBTSOV A.Disturbance Frequency Estimation for an LTV System //IFAC-PapersOnLine. – 2022. – Vol. 55, Is. 12. – P. 318–323. 10. KUSTOV A.YU., TIMIN V.N., YURCHENKOV A.V.Anisotropic Norm Computation for Time-invariant RandomSystem // Proc. of the 15th Int. Conf. on Stability andOscillations of Nonlinear Control Systems (Pyatnitskiy’sConference) (STAB). 2020. 11. KUSTOV A.YU., YURCHENKOV A.V. Anisotropic EstimatorDesign for Time Varying System with Measurement Dropouts //Proc. of the 15th Int. Conf. on Stability and Oscillations ofNonlinear Control Systems (Pyatnitskiy’s Conference) (STAB).2020. 12. KWON O.-K., DE SOUZA C.E., RYU H.-S. Robust ℋ ∞FIR filter for discrete-time uncertain systems // Proc. of 35thIEEE Conf. on Decision and Control. – 1996. – Vol. 4. –P. 4819–4824. 13. OPPENHEIM A.V., SCHAFER R.W. Digital SignalProcessing. – PrenticeHall, Inc., Englewood Cliffs, N.J.,1975. 14. POLYAK B.T., KHLEBNIKOV M.V. Filtering with nonrandomnoise: invariant ellipsoids technique // IFAC Proc. Volumes(IFAC Papers-OnLine). – 2008. – Vol. 41. 15. PYRKIN A., BOBTSOV A., ORTEGA R., ISIDORI A. Anadaptive observer for uncertain linear time-varying systemswith unknown additive perturbations // Automatica. – 2023. –Vol. 147. 16. SEMYONOV A.V., VLADIMIROV I.G., KURDJUKOV A.P.Stochastic approach to ℋ ∞ -optimization // Proc. of the 33rdConf. on Decision and Control, Florida, USA. – December 14–16, 1994. – Vol. 3. – P. 2249–2250. 17. SIMON D. Optimal State Estimation: Kalman, ℋ ∞ , andNonlinear Approaches. – New Jersey: Wiley, 2006. 18. TERMAN F.E. Electronic and Radio Engineering. – McGraw-Hill Book Company, New York, 1955. 19. THEODOR Y., SHAKED U. Robust discrete-time minimum-variance filtering // IEEE Trans. on Signal Processing. – 1996. –Vol. 44, No. 2. – P. 181–189. 20. VLADIMIROV I.G., KURDJUKOV A.P., SEMYONOV A.V.Anisotropy of Signals and the Entropy of Linear StationarySystems // Dokl. Math. – 1995. – Vol. 51. – P. 388–390. 21. VLADIMIROV I.G., KURDJUKOV A. P., SEMYONOV A.V.On Computing the Anisotropic Norm of Linear Discrete-Time-Invariant Systems // Proc. 13 IFAC World Congress. – 1996. –P. 179—184. 22. VLADIMIROV I.G., KURDJUKOV A.P., SEMYONOV A.V.State-space solution to anisotropy-based shochastic ℋ ∞ -optimization problem // Proc. of the 13th IFAC World Congress,San-Francisco, California, USA. – June 30-July 5, 1996. – V. H,Paper IFAC-3d-01.6. – P. 427–432. 23. XIE L., SOH Y.C., DE SOUZA C.E. Robust Kalman filteringfor uncertain discrete-time systems // IEEE Trans. Automat.Contr. – 1994. – Vol. 39. – P. 1310–1314. 24. YURCHENKOV A.V. Lemma on Boundedness of AnisotropicNorm for Systems with Multiplicative Noises undera Noncentered Disturbance // Automation and RemoteControl. – 2021. – P. 51–62. 25. YURCHENKOV A.V., KUSTOV A.YU. Anisotropy-BasedApproach to Communication Tuning for a Time-Varying SensorNetwork System // Dokl. Math. 2022. – Vol. 104. – P. 311–315. 26. YURCHENKOV A.V., KUSTOV A.YU., TIMIN V.N.Anisotropy-based Approach of Sensors Network Filtration:Nonzero Mean Disurbance Case // Proc. of the 16th Int. Conf.on Stability and Oscillations of Nonlinear Control Systems(Pyatnitskiy’s Conference) (STAB). 2022. 27. YURCHENKOV A.V., KUSTOV A.YU., TIMIN V.N. Thesensor network estimation with dropouts: Anisotropy-basedapproach // Automatica. – 2023. – Vol. 151.
Supplementary files


